Objective: To expand the use of magnetoencephalography (MEG) functional mapping in the operating room as well as preoperatively, a method of integrating the MEG sensorimotor mapping information into a stereotactic database, using computed tomographic scans, magnetic resonance imaging scans, and digital angiography, was developed. The combination of functional mapping and the stereotactic technique allows simultaneous viewing of the spatial relationship between the MEG-derived functional mapping, the radiological/structural anatomic characteristics, and the pathological abnormality.

Methods: MEG data were collected using a MAGNES II Biomagnetometer and were incorporated into the COMPASS frame-based and REGULUS frameless stereotactic systems. The transformation process, by calculating a translational vector and a rotation matrix, integrates functional and anatomic information that is then directly available intraoperatively in the stereotactic database. This procedure was employed in 10 patients undergoing computer-assisted stereotactic volumetric resections for lesions involving the sensorimotor cortex. The principles of coregistration and coordinate transformation are reviewed in the context of preoperative functional mapping. We introduce innovations to apply these techniques to intraoperative stereotactic systems.

Results: Tests of the accuracy of the intraoperative integration of functional information in patients and calibration phantoms indicated close agreement with earlier preoperative methods. The intraoperative availability of functional information was a significant aid to the surgeon because it provided more accurate information on the location of functional tissue than could be derived solely by radiological criteria.

Conclusion: The real-time availability of functional mapping information in an interactive fashion can reduce surgical risk and minimize functional morbidity. Within the ever-expanding realm of functional mapping and image-guided neurosurgery, further progress and integration of these methods is critical for resection of lesions involving eloquent cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006123-199607000-00018DOI Listing

Publication Analysis

Top Keywords

functional mapping
24
functional
11
image-guided neurosurgery
8
mapping stereotactic
8
stereotactic database
8
lesions involving
8
availability functional
8
stereotactic
7
mapping
7
interactive magnetoencephalography
4

Similar Publications

TREM2 is a signaling receptor expressed on microglia that has emerged as an important drug target for Alzheimer's disease and other neurodegenerative diseases. While a number of TREM2 ligands have been identified, little is known regarding the structural details of how they engage. To better understand this, we created a protein library of 28 different TREM2 variants that could be used to map interactions with various ligands using biolayer interferometry.

View Article and Find Full Text PDF

Brain iron deposition and cognitive decline in patients with cerebral small vessel disease : a quantitative susceptibility mapping study.

Alzheimers Res Ther

January 2025

Department of Radiology, Weill Medical College of Cornell University, New York, NY, USA, Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.

Background: Quantitative susceptibility mapping (QSM) can study the susceptibility values of brain tissue which allows for noninvasive examination of local brain iron levels in both normal and pathological conditions.

Purpose: Our study compares brain iron deposition in gray matter (GM) nuclei between cerebral small vessel disease (CSVD) patients and healthy controls (HCs), exploring factors that affect iron deposition and cognitive function.

Materials And Methods: A total of 321 subjects were enrolled in this study.

View Article and Find Full Text PDF

This study aims to elucidate the potential genetic commonalities between metabolic syndrome (MetS) and rheumatic diseases through a disease interactome network, according to publicly available large-scale genome-wide association studies (GWAS). The analysis included linkage disequilibrium score regression analysis, cross trait meta-analysis and colocalisation analysis to identify common genetic overlap. Using modular partitioning, the network-based association between the two disease proteins in the protein-protein interaction set was divided and quantified.

View Article and Find Full Text PDF

Hematopoietic stem cells must mitigate myriad stressors throughout their lifetime to ensure normal blood cell generation. Here, we uncover unfolded protein response stress sensor inositol-requiring enzyme-1α (IRE1α) signaling in hematopoietic stem and progenitor cells (HSPCs) as a safeguard against myeloid leukemogenesis. Activated in part by an NADPH oxidase-2 mechanism, IRE1α-induced X-box binding protein-1 (XBP1) mediated repression of pro-leukemogenic programs exemplified by the Wnt-β-catenin pathway.

View Article and Find Full Text PDF

Altered Static and Dynamic Functional Network Connectivity and Combined Machine Learning in Stroke.

Brain Topogr

January 2025

Department of Radiology, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, No 152, Ai Guo Road, Dong Hu District, Nanchang, Jiangxi, 330006, China.

Stroke is a condition characterized by damage to the cerebral vasculature from various causes, resulting in focal or widespread brain tissue damage. Prior neuroimaging research has demonstrated that individuals with stroke present structural and functional brain abnormalities, evident through disruptions in motor, cognitive, and other vital functions. Nevertheless, there is a lack of studies on alterations in static and dynamic functional network connectivity in the brains of stroke patients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!