The potential use of atomic force microscopy (AFM) to image the mode of assembly and to measure the corresponding lattice parameters of model systems consisting of ordered aggregates of cardiolipin molecules has been investigated. An unprecedented resolution of about 0.2 nm has been achieved on suitably prepared specimens. This enables the orientational order and the positional correlations of the individual molecules in the lattice to be defined, and submolecular details, such as the acyl chains and the polar groups, to be imaged. The structural parameters derived from AFM have been compared with those obtained by transmission electron diffraction of the same specimen and found to be in excellent agreement. AFM turns out to be a powerful and probably a unique tool to reveal local phase variations in systems, such as biological membranes, that have non-homogeneous composition and organization.
Download full-text PDF |
Source |
---|
Front Bioeng Biotechnol
January 2025
Department of Otorhinolaryngology, Head and Neck Surgery, Section of Experimental Oncology and Nanomedicine (SEON), Else Kröner-Fresenius-Stiftung Professorship, Universitätsklinikum Erlangen, Erlangen, Germany.
Background: With the help of superparamagnetic iron oxide nanoparticles (SPIONs), cells can be magnetically directed so that they can be accumulated at target sites. This principle can be used to make monocytes magnetically steerable in order to improve tumor accumulation, e.g.
View Article and Find Full Text PDFFront Microbiol
January 2025
Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Unidad Monterrey, Apodaca, Nuevo León, Mexico.
With antibiotic resistance increasing in the global population every year, efforts to discover new strategies against microbial diseases are urgently needed. One of the new therapeutic targets is the bacterial cell membrane since, in the event of a drastic alteration, it can cause cell death. We propose the utilization of hydrophobic molecules, namely, propofol (PFL) and cannabidiol (CBD), dissolved in nanodroplets of oil, to effectively strike the membrane of two well-known pathogens: and .
View Article and Find Full Text PDFEur J Oral Sci
January 2025
Department of Biology, Faculty of Science, Ege University, Izmir, Turkiye.
The aims of this study were twofold: first, to investigate the surface roughness of different abutment materials prepared using various manufacturing methods; and, second, to evaluate colonization by Streptococcus mutans and Candida albicans according to abutment material and manufacturing method. Six material/manufacturing method combinations were investigated in this study, namely chromium-cobalt (Cr-Co) (prepared using casting, milling, and laser sintering) and titanium, zirconia, and anodized titanium (all prepared using milling); titanium (stock) abutments were used as the control group. Surface roughness of seven specimens from each group was evaluated using atomic force microscopy and scanning electron microscopy.
View Article and Find Full Text PDFNat Commun
January 2025
Center for X-mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou, China.
Materials usually fracture before reaching their ideal strength limits. Meanwhile, materials with high strength generally have poor ductility, and vice versa. For example, gold with the conventional face-centered cubic (FCC) phase is highly ductile while the yield strength (~10MPa) is significantly lower than its ideal theoretical limit.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China. Electronic address:
The antiparallelly organized α-chitin exhibits greater thermodynamic stability and is more recalcitrant to degradation than its parallel allomorph, β-chitin, thereby impeding the efficient utilization of this natural resource. The processive chitinases usually provide the majority of catalytic potential for chitin biodegradation. Using high-speed atomic force microscopy (HS-AFM), we revealed that the opposite traffic of OfChi-h, the only processive chitinase involved in chitin biodegradation in the insect Ostrinia furnacalis, is a key factor that significantly affects α-chitin degradation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!