1. The influence of the passive force on the contraction and endothelium-dependent relaxation in aortae of normotensive Wistar Kyoto (WKY) rats and stroke-prone spontaneously hypertensive rats (SHRSP) were compared. 2. Force changes of endothelium-intact and -removed preparations were measured isometrically by a force-displacement transducer. Endothelium-dependent relaxation was observed by applying acetylcholine to the preparation precontracted in the presence of 5 x 10(-7) mol/L noradrenaline. 3. The preparations showed spontaneously developed tension (tone) that increased with the increase in the passive force. The effect of passive force was greater in preparations from SHRSP. Contraction initiated by noradrenaline was also increased by passive force up to 30 mN, then showed a tendency to decrease. 4. Endothelium-dependent relaxation was depressed as the passive force was increased. Preparations from SHRSP showed impaired endothelium-dependent relaxation and were influenced by passive force to a lesser degree when compared with preparations from WKY rats. 5. Relaxation by sodium nitroprusside was influenced by passive force to a much lesser extent than that by acetylcholine. 6. Indomethacin potentiated endothelium-dependent relaxation and blocked the effect of passive force in both preparations. 7. The difference in relaxation and the effect of passive force is primarily caused by the difference in the release of endothelium-derived contracting factor, which is thought to be a product of the cyclo-oxygenase pathway of the arachidonic acid cascade.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1440-1681.1996.tb02765.x | DOI Listing |
Circ Res
January 2025
Department of Integrative Pathophysiology, Medical Faculty Mannheim, DZHK Partnersite Mannheim-Heidelberg, University of Heidelberg, Germany (S.L.).
This review examines the giant elastic protein titin and its critical roles in heart function, both in health and disease, as discovered since its identification nearly 50 years ago. Encoded by the TTN (titin gene), titin has emerged as a major disease locus for cardiac disorders. Functionally, titin acts as a third myofilament type, connecting sarcomeric Z-disks and M-bands, and regulating myocardial passive stiffness and stretch sensing.
View Article and Find Full Text PDFMed Acupunct
October 2024
Department of Physiatry and Nursing, Faculty of Health Sciences, University of Zaragoza, Zaragoza, Spain.
Objective: Spasticity is a common complication in patients with multiple sclerosis (pwMS). The present study aimed to evaluate the clinical, biomechanical, and functional effects of dry needling (DN) in treating gastrocnemius muscle spasticity in pwMS.
Materials And Methods: A pilot single-blinded randomized controlled trial was carried out.
Subcell Biochem
December 2024
Centro de Tecnologías Físicas, Universitat Politècnica de València, Valencia, Spain.
A virus is a complex molecular machine that propagates by channeling its genetic information from cell to cell. Unlike macroscopic engines, it operates in a nanoscopic world under continuous thermal agitation. Viruses have developed efficient passive and active strategies to pack and release nucleic acids.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA.
Millimeter-wave and terahertz integrated circuits and chips are expected to serve as the backbone for future wireless networks and high resolution sensing. However, design of these integrated circuits and chips can be quite complex, requiring years of human expertise, careful tailoring of hand crafted circuit topologies and co-design with parameterized and pre-selected templates of electromagnetic structures. These structures (radiative and non-radiative, single-port and multi-ports) are subsequently optimized through ad-hoc methods and parameter sweeps.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
College of Oceanography, Hohai University, Nanjing 210024, China.
In order to figure out the wall effect on the propulsive property of an auto-propelled foil, the commercial open-source code ANSYS Fluent was employed to numerically evaluate the fluid dynamics of flexible foil under various wall distances. A virtual model of NACA0015 foil undergoing travelling wavy motion was adopted, and the research object included 2D and 3D models. To capture the foil's moving boundary, the dynamic grid technique coupled with the overlapping grid was utilized to realize the foil's positive deformation and passive forward motion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!