A mathematical model for the estimation of human embryonic and fetal age.

Cell Transplant

Department of Neurosurgery, University of Bern, Inselspital, Switzerland.

Published: February 1997

Precise determination of donor age in human embryonic and fetal tissue is crucial for cell transplantation due to the existence of distinct time windows within which successful grafting is possible. This study demonstrates that between 4-12 wk postconception embryonic and fetal age can be estimated based on various morphometric parameters measured on a routine basis in suction abortion material. The greatest length, the neck-rump length, the foot length, and the proximal and distal arm and leg length were correlated with the anamnestic and ultrasonographically estimated age. Multivariate regression analyses showed a linear correlation between age and the logarithmic value of the various morphometric parameters. The best correlation was found for a mathematical model combining the limb parameters (r = 0.904; p < 0.001; n = 37). A prospective follow-up study (n = 40) was carried out to test the validity of the mathematical model. A high correlation was found between the calculated age and the estimated age based on anamnestic data (r = 0.749, p < 0.001). Outliers due to errors in the anamnestic data were readily identified by comparing anamnestic with calculated age. This method allows determination of embryonic and fetal age within and beyond the age group of the Carnegie classification and may, therefore, be useful for the needs of experimental and clinical cell transplantation.

Download full-text PDF

Source
http://dx.doi.org/10.1177/096368979600500404DOI Listing

Publication Analysis

Top Keywords

embryonic fetal
16
mathematical model
12
fetal age
12
age
10
human embryonic
8
cell transplantation
8
age estimated
8
morphometric parameters
8
estimated age
8
calculated age
8

Similar Publications

Expanded non-invasive prenatal testing offers better detection of fetal copy number variations but not chromosomal aneuploidies.

PLoS One

January 2025

Henan Key Laboratory of Fertility Protection and Aristogenesis, Luohe Central Hospital, Luohe, Henan Province, People's Republic of China.

Purpose: To evaluate the clinical performance of expanded non-invasive prenatal testing (NIPT-plus) and compare its effectiveness in screening for chromosomal aneuploidies with that of NIPT.

Methods: Screening results, confirmatory invasive testing results, and follow-up data from pregnant women who underwent either NIPT (6792 cases) or NIPT-Plus (5237 cases) testing at Luohe Central Hospital, China, from January 2019 to June 2023 were collected. The positive predictive value (PPV), sensitivity, specificity, and other indicators for different types of chromosomal abnormalities in NIPT/NIPT-plus screening were calculated.

View Article and Find Full Text PDF

Background: A proper placentation is required for establishment and continuity of pregnancy. In sheep, placentomes are unique structures that enable nutrition and gas exchange between the mother and the foetus. Although placentomes are dynamic formations, there is limited knowledge of changes in placentomes during pregnancy.

View Article and Find Full Text PDF

Background: Due to its availability and perceived safety, paracetamol is recommended even during pregnancy and for neonates. It is used frequently alone or in combination with other drugs required for the treatment of various chronic conditions. The aim of this study was to investigate potential effects of drug interactions on paracetamol metabolism and its placental transfer and entry into the developing brain.

View Article and Find Full Text PDF

We aimed to explore the therapeutic efficacy of miR-7704-modified extracellular vesicles (EVs) derived from human umbilical cord mesenchymal stem cells (HUCMSCs) for osteoarthritis (OA) treatment. In vitro experiments demonstrated the successful transfection of miR-7704 into HUCMSCs and the isolation of EVs from these cells. In vivo experiments used an OA mouse model to assess the effects of the injection of miR-7704-modified EVs intra-articularly.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major contributor to morbidity and mortality in infants. We developed an in vitro model of human respiratory infection to study cellular immune responses to RSV in infants, children, and adults. The model includes human lung epithelial A549 cells or human fetal lung fibroblasts infected with a clinical strain of RSV at a multiplicity of infection of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!