The C-group heterogeneous nuclear ribonucleoprotein proteins bind to the 5' stem-loop of the U2 small nuclear ribonucleoprotein particle.

J Biol Chem

Cell Biology Group, Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts 01545, USA.

Published: October 1996

The C-group heterogeneous nuclear ribonucleoprotein (hnRNP) proteins bind to nascent pre-messenger RNA. In vitro studies have indicated that the C hnRNP proteins bind particularly strongly to the intron polypyrimidine tract of pre-mRNA and may be important for pre-mRNA splicing. In addition, there is evidence that the interaction of the C hnRNP proteins with pre-mRNA is facilitated by the U1 and U2 small nuclear RNPs (snRNPs). In the present study, we have uncovered another feature of the C hnRNP proteins that may provide a unifying framework for these previous observations; the C hnRNP proteins bind to the 5' stem-loop of the U2 snRNP. This was detected by incubating human 32P-labeled U2 snRNP in micrococcal nuclease-treated HeLa nuclear extracts, followed by UV-mediated protein-RNA cross-linking, which revealed that C hnRNP proteins were cross-linked to 32P-nucleotides in the U2 snRNP. In similar experiments, no cross-linking of C hnRNP proteins to 32P-labeled U1 or U4 snRNPs was observed. The observed cross-linking of C hnRNP proteins to U2 snRNP was efficiently competed by excess U2 RNA and by poly(U) but not by poly(A). No competition was observed with an RNA molecule comprising U2 nucleotides 105-189, indicating that the C hnRNP protein interactive regions of U2 RNA reside solely in the 5' half of the molecule. Oligodeoxynucleotide-mediated RNase H cleavage experiments revealed that a 5' region of U2 RNA including nucleotides 15-28 is essential for the observed C hnRNP protein cross-linking. C hnRNP protein cross-linking to U2 snRNP was efficiently competed by a mini-RNA corresponding to the first 29 nucleotides of U2 RNA, whereas no competition was observed with a variant of this mini-RNA in which the UUUU loop of stem-loop I was mutationally configured into a single-stranded RNA by replacing the stem with non-pairing nucleotides. Competition experiments with another mutant mini-U2 RNA in which the UUUU loop was replaced by AAAA indicated that both the UUUU loop and the stem are important for C hnRNP protein cross-linking, a finding consistent with other recent data on the RNA sequence specificity of C hnRNP protein binding.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.271.40.24922DOI Listing

Publication Analysis

Top Keywords

hnrnp proteins
32
hnrnp protein
20
proteins bind
16
hnrnp
13
nuclear ribonucleoprotein
12
cross-linking hnrnp
12
protein cross-linking
12
uuuu loop
12
proteins
9
rna
9

Similar Publications

Amyotrophic lateral sclerosis caused by FUS mutations: advances with broad implications.

Lancet Neurol

February 2025

Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium. Electronic address:

Autosomal dominant mutations in the gene encoding the DNA and RNA binding protein FUS are a cause of amyotrophic lateral sclerosis (ALS), and about 0·3-0·9% of patients with ALS are FUS mutation carriers. FUS-mutation-associated ALS (FUS-ALS) is characterised by early onset and rapid progression, compared with other forms of ALS. However, different pathogenic mutations in FUS can result in markedly different age at symptom onset and rate of disease progression.

View Article and Find Full Text PDF

Objective: To investigate the role of PCBP1 in the inhibition of lung adenocarcinoma proliferation by carbon irradiation.

Methods: A549 cells were irradiated with different doses of carbon ions to observe clonal survival and detect changes in cell proliferation. Whole transcriptome sequencing and the Illumina platform were used to analyze the differentially expressed genes in A549 cells after carbon ion irradiation.

View Article and Find Full Text PDF

Impacts of hnRNP A1 Splicing Inhibition on the Brain Remyelination Proteome.

J Neurochem

January 2025

Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.

Oligodendrocytes, the myelinating cells in the central nervous system, are implicated in several neurological disorders marked by dysfunctional RNA-binding proteins (RBPs). The present study aimed at investigating the role of hnRNP A1 in the proteome of the corpus callosum, prefrontal cortex, and hippocampus of a murine cuprizone-induced demyelination model. Right after the cuprizone insult, we administered an hnRNP A1 splicing activity inhibitor and analyzed its impact on brain remyelination by nanoESI-LC-MS/MS label-free proteomic analysis to assess the biological processes affected in these brain regions.

View Article and Find Full Text PDF

circ_0004662 contributes to colorectal cancer progression by interacting with hnRNPM.

Int J Oncol

February 2025

Department of Laboratory Medicine, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230031, P.R. China.

Circular (circ)RNAs participate in colorectal cancer (CRC) occurrence and progression. However, the role of hsa_circ_0004662 (circ_0004662) in CRC remains unknown. Reverse transcription‑quantitative PCR noted high expression of circ_0004662 in CRC compared with normal colorectal epithelial cells.

View Article and Find Full Text PDF

Molecular-Scale Simulation of Wetting of Actin Filaments by Protein Droplets.

J Phys Chem B

January 2025

Department of Computer and Information Sciences, Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, United States.

Liquid phase-separating proteins can form condensates that play an important role in spatial and temporal organization of biological cells. The understanding of the mechanisms that lead to the formation of protein condensates and their interactions with other biomolecules may lead to processing routes for soft materials with tailored geometry and function. Fused in sarcoma (FUS) is an example of a nuclear protein that forms stable complexes, and recent studies have highlighted its ability to wet actin filaments and bundle them into networks.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!