Download full-text PDF

Source
http://dx.doi.org/10.1016/s1076-6332(96)80570-8DOI Listing

Publication Analysis

Top Keywords

placental enhancement
4
enhancement af0145
4
af0145 perfluorocarbon-stabilized
4
perfluorocarbon-stabilized microbubble
4
microbubble sonographic
4
sonographic contrast
4
contrast agent
4
placental
1
af0145
1
perfluorocarbon-stabilized
1

Similar Publications

Imaging of the Placenta.

Clin Obstet Gynecol

March 2025

Department of Obstetrics, Gynecology and Reproductive Sciences, School of Medicine, University of Maryland, College Park, Maryland.

Placental imaging is crucial in prenatal care, offering insights into both normal and abnormal pregnancies. Traditional methods like grayscale ultrasound and magnetic resonance imaging evaluate placental anatomy, whereas Doppler ultrasound is used for functional assessment. Recent advancements include functional magnetic resonance imaging and advanced Doppler software for demonstrating placental density and visualizing spiral arteries.

View Article and Find Full Text PDF

Transcription coactivator YAP1 promotes CCND1/CDK6 expression, stimulating cell proliferation in cloned cattle placentas.

Zool Res

January 2025

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock (R2BGL), Inner Mongolia University, Hohhot, Inner Mongolia 010070, China.

Somatic cell nuclear transfer (SCNT) has been successfully employed across various mammalian species, yet cloned animals consistently exhibit low pregnancy rates, primarily due to placental abnormalities such as hyperplasia and hypertrophy. This study investigated the involvement of the Hippo signaling pathway in aberrant placental development in SCNT-induced bovine pregnancies. SCNT-derived cattle exhibited placental hypertrophy, including enlarged abdominal circumference and altered placental cotyledon morphology.

View Article and Find Full Text PDF

This review examines the emerging applications of machine learning (ML) and radiomics in the diagnosis and prediction of placenta accreta spectrum (PAS) disorders, addressing a significant challenge in obstetric care. It highlights recent advancements in ML algorithms and radiomic techniques that utilize medical imaging modalities like magnetic resonance imaging (MRI) and ultrasound for effective classification and risk stratification of PAS. The review discusses the efficacy of various deep learning models, such as nnU-Net and DenseNet-PAS, which have demonstrated superior performance over traditional diagnostic methods through high AUC scores.

View Article and Find Full Text PDF

Background/aims: Epithelial-to-mesenchymal transition (EMT) plays a crucial role in hepatic fibrogenesis and liver repair in chronic liver disease. Our research highlights the antifibrotic potential of placenta-derived mesenchymal stem cells (PD-MSCs) and the role of phosphatase of regenerating liver-1 (PRL-1) in promoting liver regeneration.

Methods: We evaluated the efficacy of PD-MSCs overexpressing PRL-1 (PD-MSCsPRL-1) in a bile duct ligation (BDL)-induced rat injury model, focusing on their ability to regulate EMT.

View Article and Find Full Text PDF

Using Transcriptomic Signatures to Elucidate Individual and Mixture Effects of Inorganic Arsenic and Manganese in Human Placental Trophoblast HTR-8/SVneo Cells.

Toxicol Sci

January 2025

Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina, USA.

Prenatal exposure to the toxic metal inorganic arsenic (iAs) is associated with adverse pregnancy and fetal growth outcomes. These adverse outcomes are tied to physiological disruptions in the placenta. While iAs co-occurs in the environment with other metals such as manganese (Mn), there is a gap in the knowledge of the effects of metal-mixtures on the placenta.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!