Objective: Hereditary vitamin D resistant rickets (HVDRR) is an autosomal recessive disorder resulting in target organ resistance to the actions of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). In many cases, this disorder has been shown to be due to mutations in the gene encoding vitamin D receptors (VDR). In a patient with characteristic features of this disorder, we investigated the functional defect and sequenced the coding region of the gene for mutations.
Design: Skin fibroblasts from patient and control were used to measure binding of 1,25(OH)2D3 and functional responses to the hormone. These cells were also used to prepare RNA from which cDNA was prepared and sequenced. Furthermore, genomic DNA was prepared from the fibroblasts and the intron/exon boundaries sequenced.
Patient: A child with classic features of HVDRR with alopecia diagnosed as having rickets due to resistance to 1,25(OH)2D3.
Measurements: Nuclear association of 1,25(OH)2D3 was determined in patient and control cells and the functional response to 1,25(OH)2D3 was assessed by measurement of 25-hydroxyvitamin D-24-hydroxylase(24-hydroxylase) activity. VDR cDNA and genomic DNA prepared from patient and control cells were sequenced.
Results: Cells from the patient with HVDRR had undetectable amounts of VDR compared to control cells and did not show induction of 24-hydroxylase activity following treatment with 1,25(OH)2D3. Sequencing of the VDR coding region after RT-PCR of RNA revealed an absence of exon 4 in patient RNA which was not due to a deletion in genomic DNA but was caused by exon skipping during RNA processing. In addition, the deletion of exon 4 sequences from RNA leads to a frameshift in translation resulting in a premature stop codon. Amplification of genomic DNA around the intron/exon boundary of exon 4 revealed a point mutation in the 5' donor splice site of intron 4.
Conclusion: In this study, we have identified a novel mutation in the gene for vitamin D receptors in a patient with the characteristic phenotype of hereditary vitamin D resistant rickets. The mutation at the +5 position in intron 4 is most likely to cause skipping of exon 4 in this patient.
Download full-text PDF |
Source |
---|
Bioinformatics
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, 9052, Belgium.
Summary: Gene and genome duplications are major evolutionary forces that shape the diversity and complexity of life. However, different duplication modes have distinct impacts on gene function, expression, and regulation. Existing tools for identifying and classifying duplicated genes are either outdated or not user-friendly.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Second Department of Oncology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
Introduction: We conducted a panoramic analysis of GBN5 expression and prognosis in 33 cancers, aiming to deepen the systematic understanding of GBN5 in cancer.
Materials And Methods: We employed a multi-omics approach, including transcriptomic, genomic, proteomic, single-cell cytomic, spatial transcriptomic, and genomic data, to explore the prognostic value and potential oncogenic mechanisms of GBN5 across pan-cancers from multiple perspectives.
Results: We found that GBN5 was differentially expressed in multiple tumors and showed early diagnostic value.
Gastric Cancer
January 2025
Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi-Do, South Korea.
Background: Intestinal-type gastric cancer (IGC) and diffuse-type gastric cancer (DGC) exhibit different prevalence rates between sexes. While environmental factors like Helicobacter pylori infection and alcohol consumption contribute to these differences, they do not fully account for them, suggesting a role for host genetic factors.
Methods: We conducted a meta-analysis to explore associations between single nucleotide polymorphisms (SNPs) and the risk of IGC or DGC.
Appl Microbiol Biotechnol
January 2025
Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224, Warsaw, Poland.
Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
School of Cardiovascular and Metabolic Medicine & Sciences, British Heart Foundation Centre of Research Excellence, King's College London, SE5 9NU London, UK.
Cardiovascular disease (CVD) is the most prevalent cause of mortality and morbidity in the Western world. A common underlying hallmark of CVD is the plaque-associated arterial thickening, termed atherosclerosis. Although the molecular mechanisms underlying the aetiology of atherosclerosis remain unknown, it is clear that both its development and progression are associated with significant changes in the pattern of DNA methylation within the vascular cell wall.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!