We have identified three DNase I-hypersensitive sites in chromatin between 15 and 17 kb upstream of the mouse pro alpha 2 (I) collagen gene. These sites were detected in cells that produce type I collagen but not in cells that do not express these genes. A construction containing the sequences from -17 kb to +54 bp of the mouse pro alpha 2 (I) collagen gene, cloned upstream of either the Escherichia coli beta-galactosidase or the firefly luciferase reporter gene, showed strong enhancer activity in transgenic mice when compared with the levels seen previously in animals harboring shorter promoter fragments. Especially high levels of expression of the reporter gene were seen in dermis, fascia, and the fibrous layers of many internal organs. High levels of expression could also be detected in some osteoblastic cells. When various fragments of the 5' flanking sequences were cloned upstream of the 350-bp proximal pro alpha 2(I) collagen promoter linked to the lacZ gene, the cis-acting elements responsible for enhancement were localized in the region between -13.5 and -19.5 kb, the same region that contains the three DNase I-hypersensitive sites. Moreover, the DNA segment from -13.5 to -19.5 kb was also able to drive the cell-specific expression of a 220-bp mouse pro alpha 1(I) collagen promoter, which is silent in transgenic mice. Hence, our data suggest that a far-upstream enhancer element plays a role in regulating high levels of expression of the mouse pro alpha 2(I) collagen gene.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120987PMC
http://dx.doi.org/10.1083/jcb.134.5.1333DOI Listing

Publication Analysis

Top Keywords

pro alpha
24
alpha collagen
24
mouse pro
20
collagen gene
16
transgenic mice
12
high levels
12
levels expression
12
far-upstream enhancer
8
expression reporter
8
three dnase
8

Similar Publications

Background: Inflammation is a driver of thrombosis, but the phenomenon of thromboinflammation has been defined only recently, bringing together the multiple pathways involved. models can support the development of new therapeutics targeting the endothelium and also assess the existing immunomodulatory drugs, such as hydroxychloroquine, in modulating the inflammation-driven endothelial prothrombotic phenotype.

Objectives: To develop a model for thrombin generation (TG) on the surface of human endothelial cells (ECs) to assess pro/antithrombotic properties in response to inflammation.

View Article and Find Full Text PDF

Introduction: Ulcerative colitis (UC), a form of inflammatory irritable bowel disease, is characterized by a recurrent and persistent nonspecific inflammatory response. Polydatin (PD), a natural stilbenoid polyphenol with potent properties, exhibits unexpected beneficial effects beyond its well-documented anti-inflammatory and antioxidant activities. In this study, we presented evidence that PD confers protection against dextran sodium sulfate (DSS)-induced ulcerative colitis.

View Article and Find Full Text PDF

Cardiometabolic diseases (CMD) are leading causes of death and disability worldwide, with complex pathophysiological mechanisms in which inflammation plays a crucial role. This review aims to elucidate the molecular and cellular mechanisms within the inflammatory microenvironment of atherosclerosis, hypertension and diabetic cardiomyopathy. In atherosclerosis, oxidized low-density lipoprotein (ox-LDL) and pro-inflammatory cytokines such as Interleukin-6 (IL-6) and Tumor Necrosis Factor-alpha (TNF-α) activate immune cells contributing to foam cell formation and arterial wall thickening.

View Article and Find Full Text PDF

Cyclosporine A is an immunosuppressive drug used in clinics to treat steroid-refractory ulcerative colitis (UC). However, due to its side effects, researchers are evaluating novel drug delivery-based treatment options. Nanoparticles-based cyclosporine (Nano-CSA) offers a promising option for the treatment of UC, and various in vivo studies on animals have been conducted.

View Article and Find Full Text PDF

Sepsis remains the leading cause of multiple-organ injury due to endotoxemia. Astaxanthin (ASTA), widely used in marine aquaculture, has an extraordinary potential for antioxidant and anti-inflammatory activity. Purinergic receptor (e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!