1. The dynamic properties of otolith-ocular reflexes elicited by sinusoidal linear acceleration along the three cardinal head axes were studied during off-vertical axis rotations in rhesus monkeys. As the head rotates in space at constant velocity about an off-vertical axis, otolith-ocular reflexes are elicited in response to the sinusoidally varying linear acceleration (gravity) components along the interaural, nasooccipital, or vertical head axis. Because the frequency of these sinusoidal stimuli is proportional to the velocity of rotation, rotation at low and moderately fast speeds allows the study of the mid-and low-frequency dynamics of these otolith-ocular reflexes. 2. Animals were rotated in complete darkness in the yaw, pitch, and roll planes at velocities ranging between 7.4 and 184 degrees/s. Accordingly, otolith-ocular reflexes (manifested as sinusoidal modulations in eye position and/or slow-phase eye velocity) were quantitatively studied for stimulus frequencies ranging between 0.02 and 0.51 Hz. During yaw and roll rotation, torsional, vertical, and horizontal slow-phase eye velocity was sinusoidally modulated as a function of head position. The amplitudes of these responses were symmetric for rotations in opposite directions. In contrast, mainly vertical slow-phase eye velocity was modulated during pitch rotation. This modulation was asymmetric for rotations in opposite direction. 3. Each of these response components in a given rotation plane could be associated with an otolith-ocular response vector whose sensitivity, temporal phase, and spatial orientation were estimated on the basis of the amplitude and phase of sinusoidal modulations during both directions of rotation. Based on this analysis, which was performed either for slow-phase eye velocity alone or for total eye excursion (including both slow and fast eye movements), two distinct response patterns were observed: 1) response vectors with pronounced dynamics and spatial/temporal properties that could be characterized as the low-frequency range of "translational" otolith-ocular reflexes; and 2) response vectors associated with an eye position modulation in phase with head position ("tilt" otolith-ocular reflexes). 4. The responses associated with two otolith-ocular vectors with pronounced dynamics consisted of horizontal eye movements evoked as a function of gravity along the interaural axis and vertical eye movements elicited as a function of gravity along the vertical head axis. Both responses were characterized by a slow-phase eye velocity sensitivity that increased three- to five-fold and large phase changes of approximately 100-180 degrees between 0.02 and 0.51 Hz. These dynamic properties could suggest nontraditional temporal processing in utriculoocular and sacculoocular pathways, possibly involving spatiotemporal otolith-ocular interactions. 5. The two otolith-ocular vectors associated with eye position responses in phase with head position (tilt otolith-ocular reflexes) consisted of torsional eye movements in response to gravity along the interaural axis, and vertical eye movements in response to gravity along the nasooccipital head axis. These otolith-ocular responses did not result from an otolithic effect on slow eye movements alone. Particularly at high frequencies (i.e., high speed rotations), saccades were responsible for most of the modulation of torsional and vertical eye position, which was relatively large (on average +/- 8-10 degrees/g) and remained independent of frequency. Such reflex dynamics can be simulated by a direct coupling of primary otolith afferent inputs to the oculomotor plant. (ABSTRACT TRUNCATED)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/jn.1996.75.6.2405 | DOI Listing |
Acta Otolaryngol
October 2023
Department of Otorhinolaryngology, Tokyo Medical and Dental University, Tokyo, Japan.
Background: Vestibular stimulation causes postural unsteadiness accompanied by a sensation of tilt.
Aims/objectives: The mechanism of the sensation of tilt needs to be assessed by accurate calculation of the rotational axis of torsional eye position under various vestibular stimulations.
Material And Methods: Twenty-two healthy subjects participated in the study.
Ann Clin Transl Neurol
December 2023
Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Here we review the clinical value of a video-oculography test for clinical evaluation of vestibular otolith function. This test is known as the video ocular counter roll (vOCR) and is based on measurement of torsional vestibulo-ocular reflex with a lateral head tilt. The vOCR test consists of a simple maneuver during which the head and torso are tilted en bloc by the examiner.
View Article and Find Full Text PDFJ Neurol Sci
August 2023
Department of Neurology, Yokohama Brain and Spine Center, Yokohama, Japan. Electronic address:
J Neurophysiol
May 2023
Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, Maryland, United States.
The otolith end organs inform the brain about gravitational and linear accelerations, driving the otolith-ocular reflex (OOR) to stabilize the eyes during translational motion (e.g., moving forward without rotating) and head tilt with respect to gravity.
View Article and Find Full Text PDFOtolaryngol Head Neck Surg
September 2023
Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
Objective: Assessment of recovery following vestibular loss has been limited by the lack of bedside measures in clinical settings. Here, we used the video ocular counter-roll (vOCR) test to study otolith-ocular function and compensatory effect of neck proprioception in patients at different stages of vestibular loss.
Study Design: Case-control study.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!