The expression of hepatocyte plasma membrane receptor-activated divalent cation channels in immature (stages V and VI) Xenopus laevis oocytes and the properties which allow these channels to be distinguished from endogenous receptor-activated divalent cation channels were investigated. Divalent cation inflow to oocytes housed in a multiwell plate was measured using the fluorescent dyes Fluo-3 and Fura-2. In control oocytes, ionomycin, cholera toxin, thapsigargin, 3-fluoro-inositol 1,4,5-trisphosphate (InsP3F) and guanosine 5'-[gamma-thio]triphosphate (GTP gamma S) stimulated Ca2+ and Mn2+ inflow following addition of these ions to the oocytes. Ionomycin-, cholera-toxin-, thapsigargin- and InsP3F-stimulated Ca2+ inflow was inhibited by Gd3+ (half maximal inhibition at less thari 5 microM Gd3+ for InsP3F-stimulated Ca2+ inflow). GTP gamma S-stimulated Ca2+ inflow was insensitive to 50 microM Gd3+ and to SK&F 96365. These results indicate that at least three types of endogenous receptor-activated Ca2+ channels can be detected in Xenopus oocytes using Ca(2+)-sensitive fluorescent dyes: lanthanide-sensitive divalent cation channels activated by intracellular Ca2+ store depletion, lanthanide-sensitive divalent cation channels activated by cholera toxin, and lanthanide-insensitive divalent cation channels activated by an unknown trimeric G-protein. Oocytes microinjected with rat hepatocyte poly(A)+ RNA exhibited greater rates of Ca2+ and Mn2+ inflow in the basal (no agonist) state, greater rates of Ca2+ inflow in the presence of vasopressin or InsP3F and greater rates of Ba2+ inflow in the presence of InsP3F, when compared with "mock"-injected oocytes. In poly(A)+ RNA-injected oocytes, vasopressin- and InsP3F-stimulated Ca2+ inflow, but not basal Ca2+ inflow, was inhibited by Gd3+. It is concluded that at least one type of hepatocyte plasma membrane divalent cation channel, which admits Mn2+ as well as Ca2+ and is lanthanide-insensitive, can be expressed and detected in Xenopus oocytes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0143-4160(96)90117-7DOI Listing

Publication Analysis

Top Keywords

divalent cation
32
ca2+ inflow
24
cation channels
20
endogenous receptor-activated
12
insp3f-stimulated ca2+
12
channels activated
12
greater rates
12
ca2+
11
oocytes
10
inflow
10

Similar Publications

Ion permeability profiles of renal paracellular channel-forming claudins.

Acta Physiol (Oxf)

February 2025

Clinical Physiology/Nutritional Medicine, Medical Department, Division of Gastroenterology, Infectiology, Rheumatology, Charité-Universitätsmedizin Berlin, Berlin, Germany.

Aim: Members of the claudin protein family are the major constituents of tight junction strands and determine the permeability properties of the paracellular pathway. In the kidney, each nephron segment expresses a distinct subset of claudins that form either barriers against paracellular solute transport or charge- and size-selective paracellular channels. It was the aim of the present study to determine and compare the permeation properties of these renal paracellular ion channel-forming claudins.

View Article and Find Full Text PDF

Layered double hydroxides (LDH) are compounds with unique structures of hydroxide functional groups on their surfaces, and they have the proper arrangement of divalent and trivalent cations to adjust their unique catalytic actions. LDH was synthesized utilizing the co-precipitation technique and was thermally treated at 300 °C. The prepared compounds were chemically and structurally elucidated using FT-IR, XRD, SEM, BET, TG-DTA, and XPS characterization.

View Article and Find Full Text PDF

Impact of ions, pH and the nature of substrate on the structure and activity of a robust single-stranded DNA binding (SSB)-like protein from Phi11.

Arch Microbiol

January 2025

Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, K K Birla Goa Campus, NH17B, Zuarinagar, Goa, 403726, India.

The gene gp13 in bacteriophage Phi11 has been annotated as a Single-Stranded DNA binding protein (SSB protein, GenBank accession no. NC_004615.1).

View Article and Find Full Text PDF

Preserving the balance of metabolic processes in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs), is crucial for optimal vascular function and integrity. ECs are metabolically active and depend on aerobic glycolysis to efficiently produce energy for their essential functions, which include regulating vascular tone. Impaired EC metabolism is linked to endothelial damage, increased permeability and inflammation.

View Article and Find Full Text PDF

Compositional heterogeneity of secondary minerals in mine waste rock: Origins and implications for water quality.

J Hazard Mater

January 2025

Department of Geological Sciences & Geological Engineering, Queen's University, Kingston, ON K7L 3N6, Canada. Electronic address:

Secondary minerals in mine waste materials impose strong controls on water quality by scavenging solutes of concern. This study investigates the mineralogical and compositional characteristics of secondary Fe(oxy)hydroxides and Ca-sulfates, two globally ubiquitous secondary precipitates, in weathered mine waste rock. Bulk analyses show that Si, Ca, Fe, Al, and S-bearing primary phases were the most abundant in the entire samples, but up to a few wt% of secondary Fe(oxy)hydroxides and Ca-sulfates were present as well.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!