Altered ovarian sterol carrier protein expression in the pregnant streptozotocin-treated diabetic rat.

Biol Reprod

Department of Obstetrics and Gynecology and Biochemistry and Molecular Biology, University of South Florida, College of Medicine, Tampa 33606, USA.

Published: July 1996

Reproductive dysfunction in the diabetic female rat is associated with impaired folliculogenesis, reduced corpus luteum progesterone output, and spontaneous abortion. The underlying mechanism for reduced steroid production remains unresolved. In this study we examined whether or not diabetes alters levels of P450 side-chain cleavage enzyme (P450scc), 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD), or the cholesterol transport proteins, steroidogenic acute regulatory (StAR) protein and sterol carrier protein-2 (SCP2), leading to lower progesterone levels and pregnancy loss. Rats (Day 3 pregnant) received an injection of streptozotocin (STZ, 60 mg/kg; i.v.) to induce a diabetic state; P450scc, 3 beta-HSD, and SCP2 were examined by Western and Northern blot analysis in ovarian tissue 12 days after injection of STZ (diabetic rats, n = 12) or vehicle (nondiabetic rats, n = 12). Serum progesterone, triglyceride, and beta-hydroxybutyrate (beta-HBA) levels were also examined. Results indicate that diabetic rats that aborted (diabetic-fetus [Ft], n = 6) had significantly lower progesterone levels (7.04 +/- 2.6 ng/ml; p < 0.004) than nondiabetic animals (108.6 +/- 5.15 ng/ml) and diabetic +Ft animals (74.3 +/- 8.9 ng/ml, n = 6). Western blot analysis of ovarian P450scc and 3 beta-HSD in the nondiabetic rats and the diabetic rats with fetuses indicated no significant difference. In contrast, ovaries from diabetic animals without fetuses had significantly lower SCP2 levels (p < 0.017) compared to controls. Concomitant with the reduction in SCP2, a 58-kDa SCP2-immunoreactive protein, referred to as sterol carrier protein-X (SCPx), increased significantly (p < 0.001). The C-terminal sequence of SCPx is identical to SCP2, while its N-terminal region is homologous with 3-oxoacyl coenzyme A thiolase, an enzyme involved in fatty acid metabolism. Increased SCPx expression coincided with increased serum triglyceride and beta-HBA levels, suggesting that the enhanced SCPx level may coincide with an ovarian shift to fatty acid metabolism. When SCPx steady-state mRNA levels were measured using an SCPx-specific riboprobe (280-bp protected fragment) in a ribonuclease protection assay, ovarian SCPx mRNA levels in the diabetic animals were increased 4.2-fold compared to control SCPx mRNA levels. Ovarian StAR mRNA levels were increased slightly in the diabetic animals, and ovarian P450scc and 3 beta-HSD mRNA levels were increased 3-fold in the diabetic animals that aborted relative to the nondiabetic animals and the +Ft diabetic animals. Results of this study confirm that SCPx mRNA levels are elevated following diabetes onset and that StAR, P450scc, and 3 beta-HSD mRNA levels do not correspond with the reduced steroid hormone profile associated with diabetes. These results are concordant with the possibility that reduced steroid levels in the diabetic animals reflect a loss of SCP2-mediated cholesterol transport capacity as SCPx/3-oxoacyl coenzyme A thiolase expression is enhanced.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod55.1.38DOI Listing

Publication Analysis

Top Keywords

mrna levels
28
diabetic animals
24
p450scc beta-hsd
16
levels
14
diabetic
13
sterol carrier
12
reduced steroid
12
diabetic rats
12
scpx mrna
12
animals
9

Similar Publications

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.

View Article and Find Full Text PDF

There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.

View Article and Find Full Text PDF

Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.

View Article and Find Full Text PDF

CAFs-released exosomal CREB1 promotes cell progression and immune evasion in thyroid cancer via the positive regulation of CCL20.

Autoimmunity

December 2025

Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.

Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!