A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

FDTD simulations for ultrasound propagation in a 2-D breast model. | LitMetric

FDTD simulations for ultrasound propagation in a 2-D breast model.

Ultrason Imaging

School of Electrical Engineering and Computer Science, Washington State University, Pullman 99164-2752, USA.

Published: January 1996

To increase the survival rates of patients with breast cancer, an ultrasound imaging system must detect tumors when they are small, with a diameter of 5 mm or less. This requires an understanding of how propagation of ultrasound energy is affected by the complex structure of the breast. In this paper, a Finite-Difference Time-Domain (FDTD) method is developed to simulate ultrasound propagation in a two-dimensional model of the human breast. The FDTD simulations make it possible to better understand the behavior of an ultrasound signal in the breast. For example, here the simulations are used to investigate the effect of fat lobes adjacent to the skin layer in a simple breast model. Experimental work performed at the University of Pennsylvania has shown that strong refraction caused by the fat lobes results in nulls in the forward transmitted field. This result was duplicated with the FDTD simulations, and it was shown that the effect of refraction is clearly evident for energy exiting the breast. The existence of strong refraction has a significant impact on ultrasound imaging since it implies that an imaging method based on a weak scattering assumption is unlikely to work well.

Download full-text PDF

Source
http://dx.doi.org/10.1177/016173469601800103DOI Listing

Publication Analysis

Top Keywords

fdtd simulations
12
ultrasound propagation
8
breast model
8
ultrasound imaging
8
fat lobes
8
strong refraction
8
breast
7
ultrasound
6
fdtd
4
simulations ultrasound
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!