The influence of endogenous cell .NO production and .NO derived from exogenous sources on oxidant injury to cultured fetal rat lung alveolar epithelium and an animal model of pulmonary oxidant injury was examined. Confluent fetal rat alveolar epithelial cell monolayers were stimulated to produce .NO after treatment with a combination of cytokines (IL-1 beta, TNF-alpha, IFN-gamma), LPS and zymosan-activated serum (CZ). Cell injury, assessed by 14C-adenine release, was significantly increased compared to basal and CZ-induced cells after inhibition of .NO synthesis by L-NMMA. Cell monolayer macromolecule barrier function was determined by the rate of diffusion of 125I-albumin from the apical to basolateral side of monolayers. Following exposure to CZ and/or O2.- generated by xanthine oxidase + lumazine (XO), endogenous cell .NO production and exogenously administered .NO (from .NO donors S-nitrosyl-glutathione and S-nitroso-N-acetylpenicillamine) significantly inhibited the increased monolayer permeability induced by exposure to reactive oxygen species. Furthermore, inhalation of 5-10 ppm of .NO significantly reduced the toxicity of > 95% oxygen to adult rats. We conclude that when cultured pulmonary epithelial cells and lung tissue in vivo are subjected to inflammatory mediators or acute oxidative stress, .NO can play a protective role by inhibiting O2.(-)-dependent toxicity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0891-5849(95)02226-0 | DOI Listing |
Sci Rep
January 2025
Department of Pharmacology and Experimental Therapeutics; MS 1015, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Health Education Building; Room 282E, 3000 Arlington Ave, Toledo, OH, 43614, USA.
We previously demonstrated that the inability of primary endothelial cilia to sense fluid shear stress can lead to nitric oxide (NO) deficiency and cause hypertension (HTN). Decreased biosynthesis of NO contributes to cerebral amyloid angiopathy in Alzheimer's disease (AD) patients through increased deposition of amyloid beta (Aβ). However, the molecular mechanisms underlying the pathogenesis of HTN and AD are incompletely understood.
View Article and Find Full Text PDFEur Respir J
January 2025
Sanofi, Bridgewater, NJ, USA.
Background: Monovalent biologics blocking thymic stromal lymphopoietin or interleukin-13 have been shown to elicit pharmacodynamic responses in asthma following a single dose. Therefore, dual blockade of these cytokines may result in an enhanced response compared to single targeting and has the potential to break efficacy ceilings in asthma. This study assessed the safety and tolerability of lunsekimig, a bispecific NANOBODY molecule that blocks thymic stromal lymphopoietin and interleukin-13, and its effect on Type 2 inflammatory biomarkers and lung function in asthma.
View Article and Find Full Text PDFJ Am Acad Dermatol
January 2025
From the Department of Dermatology, Center for Global Health, and Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania and Florida Center for Dermatology, St Augustine, Florida. Electronic address:
J Allergy Clin Immunol
January 2025
Division of Rhinology, Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine; Monell Chemical Senses Center, Philadelphia; PA; Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA. Electronic address:
Int Immunopharmacol
January 2025
Translational Research Lab, Department of Biotechnology, Faculty of Natural Sciences, Jamia Millia Islamia, New Delhi 110025, India. Electronic address:
Purpose: The purpose of this study was to investigate the therapeutic potential of Poly (ADP-ribose) polymerase 1 (PARP1) inhibition combined with microRNA miR-135a-5p overexpression in sepsis-induced acute lung injury (ALI). Specifically, we aimed to elucidate combinatorial therapeutic potential of PARP1 inhibition in mitigating oxidative stress and inflammation across different models, simultaneously miR-135a-5p overexpression promoting regeneration through the SMAD5/Nanog axis.
Method: We used C57BL/6 mice to create Cecal Ligation Puncture (CLP) model of Sepsis-induced Acute Lung Injury.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!