Download full-text PDF

Source

Publication Analysis

Top Keywords

detection psa
4
psa mrna
4
mrna blood
4
blood rt-pcr
4
rt-pcr exclusively
4
exclusively indicate
4
indicate prostatic
4
prostatic tumor
4
tumor cells
4
detection
1

Similar Publications

Focal therapy offers a promising approach for treating localized prostate cancer (PC) with minimal invasiveness and potential cost benefits. High-intensity focused ultrasound (HIFU) and brachytherapy (BT) are among these options but lack long-term efficacy data. Patient follow-ups typically use biopsies and multiparametric MRI (mpMRI), which often miss recurrences.

View Article and Find Full Text PDF

A sandwich electrochemical immunosensor was proposed for the sensitive detection of protective antigen ( PA) toxin based on cadmium sulphide nanocrystals (CdS NCs) and polypyrrole-gold nanoparticle-modified multiwalled carbon nanotubes (PPy-AuNPs/MWCNTs). Herein, PPy-AuNPs/MWCNTs were used as a biocompatible and conducting matrix for immobilization of rabbit anti-PA antibody [RαPA antibody, capturing antibody (Ab1)] and to facilitate excellent electrical conductivity. PPy-AuNPs/MWCNTs were synthesized through a one-step chemical reaction of pyrrole and Au on the surface of MWCNTs.

View Article and Find Full Text PDF

Radiopharmaceuticals targeting prostate-specific membrane antigen (PSMA) have emerged as a sensitive tool for PET imaging of prostate cancer (PCa) recurrence. Yet urinary bladder activity may obscure the visualization of prostate bed recurrence. Among the Food and Drug Administration-approved PSMA radiopharmaceuticals, F-flotufolastat (rhPSMA-7.

View Article and Find Full Text PDF

Purpose: Radiohybrid prostate-specific membrane antigen (rhPSMA) ligands are a novel class of radiopharmaceuticals developed for potential theranostic application in prostate cancer (PCa). We aimed to consolidate existing evidence on utility of 18F-rhPSMA-7/7.3 for PET imaging in PCa in the setting of biochemical recurrence (BCR).

View Article and Find Full Text PDF

An analytical method was developed for the determination of cyazofamid (CZFM) and its metabolite CCIM in rice, employing magnetic zirconia nanoparticles (MZNPs) for sample cleanup. MZNPs were synthesized through a one-step hydrothermal process and characterized by multiple techniques. Samples of rice plant, rice hull, and brown rice were extracted using acetonitrile/water, followed by salting out.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!