Objectives: The purpose of this study was to observe and measure the in vitro effect of various composite restorative materials and dentine bonding agents on the growth and adherence of oral bacterial believed to be responsible for recurrent caries in humans and on micro-organisms commonly used to evaluate the effectiveness of disinfecting agents.
Methods: Five sets of dentine bonding agents and composite resins and ten species of micro-organisms were used. Circular disc specimens of each composite set were placed onto inoculated plates. Zones of growth inhibition around specimens were measured after incubation. On other plates, specimens were placed alone for 48 h, removed, and then the micro-organisms added. Also, the composite sets were placed into sterilized bovine incisors and suspended into sucrose-containing both inoculated with Streptococcus mutans for 3 days. Adhering materials were disclosed and scored.
Results And Conclusions: Four of the composites sets produced statistically similar (P > 0.05) inhibitory zones. The Gram-negative rods and the Staphylococcus aureus were the most resistant micro-organisms. The five composites sets produced the same (P > 0.05) reduction in bacterial accumulation (> 60%). Aging of the specimens in water for periods up to 4 weeks prior to exposure to S. mutans did not affect product activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0300-5712(95)00057-7 | DOI Listing |
Lasers Med Sci
January 2025
Department of Preventive and Restorative Dentistry, Discipline of Endodontics, Araçatuba School of Dentistry, São Paulo State University - UNESP, Araçatuba, SP, Brazil.
Investigate the impact of antimicrobial photodynamic therapy (aPDT) using different photosensitizers (PSs) such as indocyanine green (IG), curcumin (CC), and methylene blue (MB), with or without intracanal application of calcium hydroxide (CH), on the push-out bond strength of glass-fiber posts (GFPs) to intraradicular dentin, the chemical composition of the root substrate, and the sealing of the adhesive interface across different thirds of intraradicular dentin. A total of 112 bovine teeth underwent biomechanical preparation and were divided into eight experimental groups (n = 14 each): Negative control with deionized water; positive control with deionized water + CH; IG group with indocyanine green and infrared laser; IG + CH group; CC group with curcumin and blue LED; CC + CH group; MB group with methylene blue and red laser; and MB + CH group. The push-out bond strength was measured using a universal testing machine (n = 8), and scanning electron microscopy characterized the fracture patterns.
View Article and Find Full Text PDFJ Contemp Dent Pract
October 2024
College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates; Department of Endodontic, Faculty of Dentistry, Mansoura University, Egypt, Orcid: https://orcid.org/0000-0003-3391-5306.
Aim: This study aimed to investigate and compare the total and sectional bond strengths of three endodontic sealers when used with the single-cone obturation technique.
Materials And Methods: Forty-five human maxillary central incisors were prepared and divided into three groups according to the type of endodontic sealer: Group I (Gutta-percha/AH Plus Jet), group II (Gutta-percha/GuttaFlow 2), and group III (RealSeal/RealSeal SE). All canals were filled with the single-cone technique.
J Contemp Dent Pract
October 2024
Department of Dental Biomaterials, Faculty of Dental Medicine for Girls, Al-Azhar University, Cairo, Egypt, Orcid: https://orcid.org/0000-0002-3420-4146.
Aim: To assess the effect of mushrooms, ozone gas, and their combination as cavity disinfectants on the bonding strength of composite to dentin.
Materials And Methods: The study was conducted on 40 sound premolar teeth randomly divided into four groups. Group I: control group, Group II: mushroom group, Group III: Ozone group, and Group IV: mushroom + ozone gas (combination) group.
J Dent Sci
January 2025
School of Dentistry and Institute of Oral Medicine, National Cheng Kung University, Tainan, Taiwan.
Background/purpose: The efficacy of riboflavin-ultraviolet-A (RF-UVA) treatment in crosslinking collagen and improving dentin bonding has been proven. However, biodegradation of the hybrid layer may compromise the bonding. The purpose of this study was to evaluate different RF-UVA treatments regarding their ability to preserve dentin bonding from enzymatic digestion.
View Article and Find Full Text PDFJ Funct Biomater
January 2025
Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea.
To overcome limitations of dentin bonding due to collagen degradation at a bonded interface, incorporating bioactive glass (BAG) into dentin adhesives has been proposed to enhance remineralization and improve bonding durability. This study evaluated sol-gel-derived BAGs (BAG79, BAG87, BAG91, and BAG79F) and conventional melt-quenched BAG (BAG45) incorporated into dentin adhesive to assess their remineralization and mechanical properties. The BAGs were characterized by using field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy for surface morphology.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!