4-[76Br]bromodexetimide and its inactive enantiomer 4-[76Br]bromolevetimide were prepared via electrophilic bromodesilylation using chloramine-T and no-carrier-added (NCA) [76Br]NH4. In vitro, Bmax measured on rat cortex membranes were 3.7 +/- 0.2 and < 0.07 pmol/mg protein for 4-[76Br]bromodexetimide and 4-[76Br]bromolevetimide, respectively. The kD of 4-[76Br]bromodexetimide was 1.9 +/- 0.3 nM. In vivo studies in rats showed specific uptake of 4-[76Br]bromodexetimide in cortex, striatum, thalamus and hippocampus. No specific uptake was observed with 4-[76Br]bromolevetimide. With [76Br]bromodexetimide, positron emission tomography (PET) studies in primates demonstrated a preferential accumulation of the radioactivity in the cortex and striatum which was displaced to the level of cerebellum by dexetimide. With 4-[76Br]bromolevetimide, the radioactivity concentrations in the cortex and striatum were similar to that of cerebellum.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0969-8051(95)02052-7DOI Listing

Publication Analysis

Top Keywords

cortex striatum
12
positron emission
8
emission tomography
8
4-[76br]bromodexetimide 4-[76br]bromolevetimide
8
specific uptake
8
4-[76br]bromodexetimide
5
4-[76br]bromolevetimide
5
pharmacological characterization
4
characterization positron
4
tomography evaluation
4

Similar Publications

Neurotransmitters crosstalk and regulation in the reward circuit of subjects with behavioral addiction.

Front Psychiatry

January 2025

Xinjiang Clinical Medical Research Center of Mental Health, The Psychological Medicine Center, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.

Behavioral addictive disorders (BADs) have become a significant societal challenge over time. The central feature of BADs is the loss of control over engaging in and continuing behaviors, even when facing negative consequences. The neurobiological underpinnings of BADs primarily involve impairments in the reward circuitry, encompassing the ventral tegmental area, nucleus accumbens in the ventral striatum, and prefrontal cortex.

View Article and Find Full Text PDF

Background: While Alcohol Use Disorder (AUD) is frequently associated with impulsivity, its structural brain substrates are still poorly defined. The triadic model of addiction postulates that impulsive behavior is regulated by an amygdalo-striatal impulsive subcomponent, a prefrontal and cerebellar reflective subcomponent, and an insular regulatory subcomponent. The objective of this study was thus to examine the relationships between self-evaluated impulsivity and structural brain abnormalities in patients with severe AUD (sAUD) using the triadic model as a theoretical framework.

View Article and Find Full Text PDF

Attention-deficit/hyperactivity disorder-related psychomotor activity and altered neuronal activity in the medial prefrontal cortex and striatum in the A53T mouse model of Parkinson's disease and other synucleinopathies: Findings from an "endophenotype" approach.

Prog Neuropsychopharmacol Biol Psychiatry

January 2025

Laboratory of Molecular Neurobiology and Behavior, Department of Neurobiology, Institute for Biological Research "Siniša Stanković" - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia. Electronic address:

Attention-Deficit/Hyperactivity Disorder (ADHD) is associated with an increased risk of Parkinson's disease (PD) and other synucleinopathies later in life. The severity of the ADHD phenotype may play a significant role in this association. There is no indication that any of the existing animal models can unify these disorders.

View Article and Find Full Text PDF

BDNF plays a crucial role in shaping the structure and function of neurons. BDNF signaling in the dorsolateral striatum (DLS) is part of an endogenous pathway that protects against the development of alcohol use disorder (AUD). Dysregulation of BDNF levels in the cortex or dysfunction of BDNF/TrkB signaling in the DLS results in the escalation of alcohol drinking and compulsive alcohol use.

View Article and Find Full Text PDF

The mediating effect of the striatum-based connectivity on the association between high-sensitivity C-reactive protein and anhedonia in adolescent depression.

J Affect Disord

January 2025

Department of Child Psychiatry of Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen Institute of Mental Health, Shenzhen, China. Electronic address:

Background: The potential pairwise connections among high-sensitivity C-reactive protein (hs-CRP), striatum-based circuits, and anhedonia in adolescent depression are not clear. This study aimed to explore whether hs-CRP levels in adolescents with depression influence anhedonia via alterations of striatum-based functional connectivity (FC).

Methods: A total of 201 adolescents (92 with depressive episodes with anhedonia (anDE), 58 with DE without anhedonia (non-anDE), and 51 healthy controls (HCs)) underwent resting-state functional magnetic resonance imaging (fMRI) and completed the anhedonia subscale of the Children's Depression Inventory (CDI).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!