Peptides 31D and VF13, corresponding to the rabies virus nucleo- and glycoproteins, respectively, vigorously stimulate T helper cells of the appropriate specificity. Earlier we showed how internal and external glycosylation affects the major histocompatibility complex molecule (MHC)-binding ability and conformation of these T-cell epitopes (Otvos et al. (1994) Biochim. Biophys. Acta 1224, 68-76; Otvos et al. (1995) Biochim. Biophys. Acta 1267, 55-64). In the current report, we examined the T-helper cell stimulatory ability after introduction of a new set of post-translational modifications. To obtain general information concerning the effects of amino acid side-chain modifications on other biochemical properties of protein fragments, we studied the serum stability and the conformation of the 31D and VF13 peptides. We found that the extent of the reduction of the T-cell stimulatory activity depends upon the location in the sequence of the host amino acid residue. Generally, beta-linked sugars in mid-chain positions had a greater inhibitory effect than alpha-linked sugars attached to identical amino acids. In a case where mid-chain glycosylation just marginally reduced the T-cell stimulatory activity, the beta-linked glycopeptide was significantly more resistant to serum proteases. This finding suggests that addition of beta-linked carbohydrates might be superior to the addition of alpha-linked sugars for vaccine development, and generally for peptide agonist drug design. In addition, data presented here provide the first documentation that phosphorylation and sulfation of tyrosine residues may retain the MHC-binding ability and T-cell stimulatory activity of class II epitopes. The sulfated and the phosphorylated 31D peptides exhibited considerably increased serum stability compared to the unmodified parent peptide. Finally, all post-translational modifications destabilized the dominant alpha-helical or turn structures of the peptides presented in aqueous trifluoroethanol mixtures. While the circular dichroism spectra of the alpha- and beta-linked VF13 glycopeptides with monosaccharides were almost indistinguishable, the structure of the glycopeptides depended upon the length of the sugar moiety. Significantly, incorporation of sulfate or phosphate groups resulted in identical peptide conformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0167-4889(96)00046-8 | DOI Listing |
Nat Commun
January 2025
Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
Polymeric nanoparticles (NPs) are promising tools used for immunomodulation and drug delivery in various disease contexts. The interaction between NP surfaces and plasma-resident biomolecules results in the formation of a biomolecular corona, which varies patient-to-patient and as a function of disease state. This study investigates how the progression of acute systemic inflammatory disease influences NP corona compositions and the corresponding effects on innate immune cell interactions, phenotypes, and cytokine responses.
View Article and Find Full Text PDFiScience
January 2025
Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands.
Proton pump inhibitors have been explored for potentiating cancer therapies via reverting the tumor acidity and promoting the activation of anti-tumor immune responses. To regulate the intracellular pH of melanoma and immunosuppressive myeloid cells, we developed poly(L-lactide-co-glycolide) nanoparticles loaded with esomeprazole (ESO-NPs). The effect of ESO-NPs on melanoma cells was observed as alkalinization and reduction of melanin content accompanied by a decrease of microphthalmia-associated transcription factor (MITF), poliovirus receptor (PVR), and programmed death ligand 1 (PD-L1) immune checkpoint expression.
View Article and Find Full Text PDFSignal Transduct Target Ther
January 2025
Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, Republic of Korea.
Dynamic communication between hepatocytes and the environment is critical in hepatocellular carcinoma (HCC) development. Clinical immunotherapy against HCC is currently unsatisfactory and needs more systemic considerations, including the identification of new biomarkers and immune checkpoints. Transmembrane 4 L six family member 5 (TM4SF5) is known to promote HCC, but it remains unclear how cancerous hepatocytes avoid immune surveillance and whether avoidance can be blocked.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China. Electronic address:
Spinal cord injury (SCI) is a potentially fatal condition that often results in loss of motor and sensory functions, thereby significantly burdening global health initiatives. Urolithin A (UA), an intestinal microbial metabolite of ellagic acid, is known for its potent anti-inflammatory properties in chronic inflammation contexts. UA treatment in humans induces a molecular signature of improved mitochondrial and cellular health.
View Article and Find Full Text PDFBioorg Chem
January 2025
Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China. Electronic address:
Hematopoietic progenitor kinase 1 (HPK1), which negatively regulates immune signaling, has emerged as an attractive small-molecule drug target for tumor immunotherapy. Herein, we report the discovery of the 1,2,4-benzotriazine derivatives as new potent HPK1 inhibitors. Notably, compound A29 exhibited improved HPK1 inhibitory activity relative to compound 1 in the ADP-Glo kinase assay (IC = 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!