Molecular markers of ionizing radiation-induced gene mutations in mammalian cells.

Environ Health Perspect

Department of Preventive Medicine and Community Health, University of Texas Medical Branch, Galveston 77550, USA.

Published: May 1996

We have isolated independent Chinese hamster ovary (CHO) cell mutants at the hypoxanthine guanine phosphoribosyltransferase (hprt) locus from untreated, 60Co gamma-ray-exposed, and 212Bi alpha-exposed cells and identified the molecular changes underlying the mutation determined by multiplex polymerase chain reaction (PCR)-based exon deletion analysis. Both the parental CHO-K1 cells and the X-ray-sensitive mutant xrs-5 cells were studied. The radiosensitive xrs-5 cells are defective in DNA double-strand break rejoining ability and in V(D)J recombination, which can be complemented by Ku protein. Of the 71 spontaneous CHO-K1 hprt mutants analyzed, 78% showed no change in exon number or size, 20% showed loss of one to eight exons (partial deletion), and 3% showed loss of all nine hprt exons (total deletion). Exposure of CHO-K1 cells to 6 Gy of gamma rays, which reduced survival levels to 10%, produced a high deletion spectrum with 45% of the 20 mutants analyzed showing a loss of one to eight exons and 30% showing total deletion. Exposure to an equitoxic dose of alpha radiation from 212Bi, a 220Rn daughter, resulted in a spectrum similar to the gamma-ray spectrum in that 75% of the 49 mutants analyzed were deletions. To alpha radiation, however, tended to produce larger intragenic deletions than gamma radiation. Of the 92 spontaneous xrs-5 mutants analyzed for deletions, 43% showed a loss of one to eight exons and 14% showed total deletion. This suggests that, in certain regions of the hprt gene, base alterations can be converted into large deletions and alteration in the Ku protein complex can influence this type of mutational process. Exposure to alpha radiation (10% survival) to xrs-5 cells resulted in a deletion spectrum similar to that seen in CHO-K1 cells. Of the 49 mutants analyzed, 43% showed on change in exon number or size, 16% showed a loss of one to eight exons, and 41% showed total deletion. While the defect in xrs-5 cells has a profound effect on spontaneous mutant spectra, this defect does not appear to affect alpha-induced mutation spectra.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1469617PMC
http://dx.doi.org/10.1289/ehp.96104s3675DOI Listing

Publication Analysis

Top Keywords

mutants analyzed
20
xrs-5 cells
16
loss exons
16
total deletion
16
cho-k1 cells
12
alpha radiation
12
cells
9
deletion
8
change exon
8
exon number
8

Similar Publications

The Rbfox proteins regulate alternative pre-mRNA splicing by binding to the RNA element GCAUG. In the nucleus, most of Rbfox is bound to the large assembly of splicing regulators (LASR), a complex of RNA-binding proteins that recognize additional RNA motifs. However, it remains unclear how the different subunits of the Rbfox/LASR complex act together to bind RNA and regulate splicing.

View Article and Find Full Text PDF

Mitral Valve Prolapse Caused by TLL1 Gain-of-Function Mutation.

Can J Cardiol

January 2025

The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel; Genetics Institute, Soroka University Medical Center, Be'er Sheva, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel. Electronic address:

Background: Mitral valve prolapse (MVP) is a common cardiac valvular anomaly that can be caused by mutations in genes of various biological pathways. Individuals of three generations of a kindred presented with apparently dominant heredity of isolated MVP.

Methods: Clinical evaluation and echocardiography for all complying family members (n=13).

View Article and Find Full Text PDF

Background: High-throughput behavioral analysis is important for drug discovery, toxicological studies, and the modeling of neurological disorders such as autism and epilepsy. Zebrafish embryos and larvae are ideal for such applications because they are spawned in large clutches, develop rapidly, feature a relatively simple nervous system, and have orthologs to many human disease genes. However, existing software for video-based behavioral analysis can be incompatible with recordings that contain dynamic backgrounds or foreign objects, lack support for multiwell formats, require expensive hardware, and/or demand considerable programming expertise.

View Article and Find Full Text PDF

An attenuated live strain of HY9901 mutant Δgr provides protection against Vibrio alginolyticus in pearl gentian grouper (♀Epinephelus fuscoguttatus × ♂Epinephelus lanceolatu).

Vet Immunol Immunopathol

January 2025

Fisheries College of Guangdong Ocean University, Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Key Laboratory of Control for Diseases of Aquatic Economic Animals of Guangdong Higher Education Institute, Zhanjiang, China. Electronic address:

Vibrio alginolyticus is a serious aquaculture bacterial pathogen, which is widely distributed in the ocean and rivers, and cause vibriosis in aquaculture. Therefore, it is imperative to develop effective vaccine to prevent vibriosis. In this study, the efficacy of gr deletion strain (Δgr) of V.

View Article and Find Full Text PDF

Many applications of enzymes benefit from activity on structurally diverse substrates. Here, we sought to engineer the decarboxylative aldolase UstD to perform a challenging C-C bond forming reaction with ketone electrophiles. The parent enzyme had only low levels of activity, portending multiple rounds of directed evolution and a possibility that mutations may inadvertently increase the specificity of the enzyme for a single model screening substrate.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!