Liquid under pressure is saturated with a given gas, such as argon, nitrogen, or air, by circulation through a column of gas exchangers. A sample of the gas-saturated liquid is isolated in a test chamber, the volume of which can be increased by means of a moving piston. The piston motion is cyclical with a variable frequency. Pressure in the test chamber is measured by means of a capacitive pressure pick-up. When the volume increase of the gas-saturated liquid in the test chamber is compensated for by the development of gas phase bubbles, the pressure decrease will stop; the recording device will show a pressure plateau, or a dip in the pressure-time course, depending on the velocity of the growth of the bubbles. Bubble formation threshold was independent of the frequency of the piston movement within frequency limits from 1 Hz down to 10(-3) Hz. Most experiements were carried out at a single frequency of 0.5 Hz. This new method appears to have advantages over previous ones.

Download full-text PDF

Source

Publication Analysis

Top Keywords

test chamber
12
bubble formation
8
formation threshold
8
gas-saturated liquid
8
pressure
5
method measurement
4
measurement bubble
4
threshold biological
4
biological liquids
4
liquids liquid
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!