This study investigated the effects of glycine on reperfusion injury in a low-flow, reflow liver perfusion model. With this protocol, livers were perfused at low flow rates of approximately 1 ml.g-1. min-1 for 75 min, which caused cells in pericentral regions of the liver lobule to become anoxic because of insufficient delivery of oxygen. When normal flow rates (approximately 4 ml.g-1.min-1) were restored for 40 min, an oxygen-dependent reperfusion injury occurred. Upon reflow, lactate dehydrogenase (LDH), a cytosolic enzyme, and malondialdehyde (MDA), an end product of lipid peroxidation, were released into the effluent perfusate. LDH increased from basal levels of approximately 1-35 IU.g-1.h-1 in livers from control rats. Glycine (0.06-2.00 mM) minimized enzyme release in a dose-dependent manner (half-maximal decrease = 133 microM), with maximal values only reaching 5 IU.g-1.h-1 when glycine was increased to 2 mM. Reflow for 40 min after 75 min of low-flow hypoxia caused death in approximately 30% of previously anoxic parenchymal cells in pericentral regions; however, infusion of glycine (2 mM) decreased cell death to less than 10%. Strychnine (1 mM), which was found to mimic the cytoprotective effect of glycine in proximal renal tubules, also reduced LDH release to 11 IU.g-1.h-1 in this study. Bile was released at rates of approximately 42 microliters.g-1.h-1 in livers from control rats, but values were not altered significantly by glycine. Maximal MDA production during reperfusion decreased by 35% with 0.6 mM of glycine. Trypan blue distribution time, an indicator of hepatic microcirculation, was reduced significantly by glycine at 5 and 40 min after reflow, but changes were about twofold greater at later time points compared with earlier ones (half-maximal decrease = 225 microM). Time for oxygen to reach steady state upon reflow was reduced by glycine in a dose-dependent manner, and the rates of entry and exit of a dye confined to vascular space (fluorescein dextran) were increased two- to threefold by glycine, respectively. Taken together, these data indicate that a reperfusion injury that occurs in previously hypoxic pericentral regions of the liver upon reintroduction of oxygen is minimized by glycine, possibly by action on a glycine-sensitive anion channel to improve microcirculation during the reperfusion period.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpgi.1996.270.2.G332DOI Listing

Publication Analysis

Top Keywords

reperfusion injury
16
glycine
12
pericentral regions
12
injury low-flow
8
low-flow reflow
8
reflow liver
8
liver perfusion
8
perfusion model
8
flow rates
8
cells pericentral
8

Similar Publications

The glycocalyx is a layer of villus-like structure covering the luminal surface of vascular endothelial cells. Damage to the glycocalyx has been proven linked to the development of many diseases. However, the factors that promote damage to the glycocalyx are not fully elaborated.

View Article and Find Full Text PDF

Myocardial ischemia/reperfusion (I/R)-induced cell death, such as autophagy and ferroptosis, is a major contributor to cardiac injury. Regulating cell death may be key to mitigating myocardial ischemia/reperfusion injury (MI/RI). Autophagy is a crucial physiological process involving cellular self-digestion and compensation, responsible for degrading excess or malfunctioning long-lived proteins and organelles.

View Article and Find Full Text PDF

Intestinal ischemia-reperfusion (I/R) injury occurs under various surgical or disease conditions, where tissue hypoxia followed by reoxygenation results in the production of oxygen radicals and inflammatory mediators. These substances can target the endothelial barrier, leading to microvascular leakage. In this study, we induced intestinal I/R injury in mice by occluding the superior mesenteric artery, followed by removing the clamp to resume blood circulation.

View Article and Find Full Text PDF

P2 purinergic receptors at the heart of pathological left ventricular remodeling following acute myocardial infarction.

Am J Physiol Heart Circ Physiol

January 2025

Université de Tours, Inserm UMR1327 ISCHEMIA Membrane Signalling and Inflammation in reperfusion injuries, Tours, France.

Pathological left ventricular remodeling is a complex process following an acute myocardial infarction, leading to architectural disorganization of the cardiac tissue. This phenomenon is characterized by sterile inflammation and the exaggerated development of fibrotic tissue, which is non-contractile and poorly conductive, responsible for organ dysfunction and heart failure. At present, specific therapies are lacking for both prevention and treatment of this condition, and no biomarkers are currently validated to identify at-risk patients.

View Article and Find Full Text PDF

Objective: To investigate the effects and mechanisms of miRNA 221 on myocardial ischemia/reperfusion injury (MIRI) in mice through the regulation of phospholamban (PLB) expression.

Methods: The MIRI mouse model was created and mice were divided into sham, MIRI, MIRI+ 221, and MIRI+ scr groups, with miRNA 221 overexpression induced in the myocardium of MIRI mice by targeted myocardial injection. Quantitative RT-PCR analysis was performed to observe the variation in miRNA 221, PLB, SERCA2, RYR2, NCX1, Cyt C and caspase 3 mRNA levels in myocardium, while Western blot assessed the levels of PLB, p-PLB (Ser16), p-PLB (Thr17), SERCA2, RYR2, NCX1, Cyt C and caspase 3 proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!