The distribution of GM1 and GM3 gangliosides in human brain development between gestational week (g.w.) 6 and 15 was demonstrated by an immunocytochemical approach using polyclonal anti-GM1 and anti-GM3 antibodies. The first appearance of GM1- and GM3-positive cells was recorded as early as in g.w.6. Both antibodies labeled the cells in the ventricular zone of the telencephalic wall, with radially oriented fibers toward the pial surface, which represent radial glia cells with glia fibers. The intensive GM3 immunoreactivity was also exhibited in proliferating cells in the ventricular zone between g.w.6 and 12. During the period from g.w. 12 to 15, characterized by a rapid multiplication of neurons and glia cells, an increased number of GM1- and GM3-positive cells was observed. Prominent GM1 ganglioside staining was observed at the surface of the cell bodies in the ventricular zone. Besides surface labeling in migrating cells, GM1 immunoreactivity was identified inside the soma in the regions of cortical plate and subplate. GM1 immunoreactivity was more pronounced on the membrane of neuronal cells migrating along radial glia fibers, especially at the contact site between neuronal and glial cells. The GM3 ganglioside was localized mostly inside the soma, showing a granular immunoreactivity pattern. Our observations confirm the presence of GM1 and GM3 gangliosides in neuronal and glial cells in early human brain development. The involvement, especially of GM1 ganglioside in glia-neuronal contacts during migration of neuroblasts to their final destination, as well as the presence of GM3 ganglioside in proliferative cells in the ventricular zone of the telencephalic wall was also recorded.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0736-5748(95)00078-xDOI Listing

Publication Analysis

Top Keywords

ventricular zone
16
gm1 gm3
12
human brain
12
brain development
12
cells ventricular
12
cells
11
early human
8
gm3 gangliosides
8
gm1- gm3-positive
8
gm3-positive cells
8

Similar Publications

Background: The initial outcomes of transcatheter aortic valve replacement in patients with left ventricular outflow tract calcification are poor. Furthermore, balloon-expandable transcatheter aortic valve replacement is associated with an increased risk of annular rupture, and self-expandable transcatheter aortic valve replacement is associated with worse post-operative residual paravalvular leakage grades. Therefore, developing an optimal method for transcatheter aortic valve replacement for patients with left ventricular outflow tract calcification is desirable.

View Article and Find Full Text PDF

The fate mapping technique is essential for understanding how cells differentiate and organize into complex structures. Various methods are used in fate mapping, including dye injections, genetic labeling (e.g.

View Article and Find Full Text PDF

Primary cilia play a pivotal role in cellular signaling and development and disruptions in ciliary form and/or function leads to human ciliopathies. Here, we examine the role of , a key component of the intraflagellar transport-A complex, in mouse forebrain development using a null allele. Our findings reveal significant microcephaly in homozygous mutants is caused by disrupted neural progenitor proliferation and differentiation.

View Article and Find Full Text PDF

A New target of ischemic ventricular arrhythmias-ITFG2.

Eur J Pharmacol

January 2025

Department of Basic Medicine, Institute of Respiratory Diseases Xiamen Medical College, Xiamen Medical College, Xiamen, Fujian 361023, P. R. China; State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China. Electronic address:

ITFG2 is an intracellular protein known to modulate the immune response of T-cells. Our previous investigation revealed that ITFG2 specifically targets ATP5b to regulate ATP energy metabolism and maintain mitochondrial function, thereby protecting the heart from ischemic injury. However, the role of ITFG2 in ischemic ventricular arrhythmias and its underlying mechanisms have not been previously reported.

View Article and Find Full Text PDF

eIF4A1 exacerbates myocardial ischemia-reperfusion injury in mice by promoting nuclear translocation of transgelin/p53.

Acta Pharmacol Sin

January 2025

Department of Pharmacology, National Key Laboratory of Frigid Zone Cardiovascular Diseases, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, 150086, China.

Eukaryotic translation initiation factor 4A1 (eIF4A1) is an ATP-dependent RNA helicase that participates in a variety of biological and pathological processes such as cell proliferation and apoptosis, and cancer. In this study we investigated the role of eIF4A1 in ischemic heart disease. The myocardial ischemia/reperfusion (I/R) model was established in mice by ligation of the left anterior descending artery for 45 min with the subsequent reperfusion for 24 h; cultured neonatal mouse ventricular cardiomyocytes (NMVCs) treated with HO (200 μM) or H/R (12 h hypoxia and 12 h reoxygenation) were used for in vitro study.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!