Based on recent improvements in the field, biexponential data from fresh rat liver and monoexponential data from cold storage experiments allow quantification of three distinct relaxation components in liver tissue: bound water (4.2%, R1 = 12.0 +/- 1.7 s-1, R2 = 440 +/- 180 s-1); structured water (59%, R1 approximately 3.3 +/- 0.07 s-1, R2 approximately 24.9 +/- 1.1 s-1); and free water (approximately 37%, R1 = R2 approximately 0.4 s-1). However, only the relaxation rates of the structured water component change with water content: R1A (s-1) = 6.53* Ms/Mw - 0.77 (r2 = 0.911); R2A (s-1) = 71.15 * Ms/Mw - 3.09 (r2 = 0.956), respectively. This suggests a slow exchange between bound and structured water in liver cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01759780 | DOI Listing |
Water Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFWater Res
January 2025
Hull International Fisheries Institute, School of Natural Sciences, University of Hull, Hull, UK.
Globally, fish have been severely affected by the widespread, chronic degradation of fresh waters, with a substantial proportion of species declining in abundance or range in recent decades. This has especially been the case in densely populated countries with an industrial heritage and intensive agriculture, where the majority of river catchments have been affected by deteriorations in water quality and changes in land use. This study used a spatially and temporally extensive dataset, encompassing 16,124 surveys at 1180 sites representing a wide range of river typologies and pressures, to examine changes in the fish populations of England's rivers over four decades (1980s-2010s).
View Article and Find Full Text PDFActa Crystallogr B Struct Sci Cryst Eng Mater
February 2025
Institute of Low Temperature and Structure Research, Polish Academy of Sciences, 2 Okólna, Wrocław, 50-422, Poland.
X-ray structural analysis of bis(guanidinium) disodium hypodiphosphate heptahydrate, (CHN)Na(PO)·7HO revealed close Na...
View Article and Find Full Text PDFInorg Chem
January 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang, Liaoning 110819, China.
Copper-based halides have attracted significant attention due to their unique photophysical properties and diverse coordination configurations. However, enhancing water stability and modulating structural transitions in cuprous halide materials remain challenging. In this work, we successfully synthesized three copper(I) halides, (CHP)CuBr (L1, [CHP] = hexyltriphenylphosphonium), (CHP)CuBr (L2), and (CHP)CuI (L3), via solvent volatilization, demonstrating exceptional water stability even after 27 days of submersion.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Chemistry, Bharathiar University, Coimbatore 641 046, India.
Developing nonprecious metal-based electrocatalysts with exceptional activity and durability for water electrolysis remains a significant challenge. Herein, we report a highly efficient bifunctional electrocatalyst composed of sulfur-doped vanadium metal-organic frameworks (S@V-MOF) integrated with multiwalled carbon nanotubes (MWCNTs) to promote the synergistic effect between S@V-MOF and MWCNTs and modulate the electronic structure of the catalyst, which eventually enhanced its electrocatalytic performance. The S@V-MOF/MWCNT catalyst loaded at the Ni foam electrode exhibits remarkable activity for both the hydrogen evolution reaction (HER) in acidic media and oxygen evolution reaction (OER) in alkaline media, requiring overpotentials of 48 and 227 mV, respectively, to reach a current density of 10 mA cm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!