The formyl peptide receptor on human neutrophils recognizes bacterial, N-formylated peptides and initiates a cascade of intracellular signals via a pertussis toxin sensitive Gi protein. We used fluorescence techniques to investigate the interactions of ligand (L), receptor (R), and G proteins (G), the ternary complex, in both live and fixed human neutrophils. By lightly fixing permeabilized neutrophils with a procedure that retained ligand binding, we were able to "capture' R and G in different configurations in the absence of ligand. Fixed receptors were trapped in a high affinity form (attributed to LRG) that could not be rapidly converted to low affinity by the addition of GTP[S]. Adding saturating nucleotide prior to fixation trapped receptors in a low affinity form (attributed to LR). The low affinity receptors retained the sensitivity of the native receptors to the presence of NA+. The distribution between high and low affinity receptors was modulated by GTP[S] in a dose dependent manner. The ability to redistribute low and high affinity receptor forms prior to fixation was unique to GTP[S], as compared to other non-activating nucleotides, suggesting that GTP[S] can regulate the distribution between R and RG. We suggest that precoupled receptors that give rise to high affinity ligand binding are likely to exist in native membranes in human neutrophils.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10799899609039941 | DOI Listing |
Lipophilicity and blood partitioning are important determinants for predicting toxicokinetics using physiologically-based toxicokinetic (PBTK) modeling. In this study, the logarithm of the -octanol:water partition coefficient (log) and the blood-to-plasma concentration ratio ( ) were for the first time experimentally determined for the pyrrolizidine alkaloids (PAs) intermedine, lasiocarpine, monocrotaline, retrorsine and their -oxides (PANOs). Validated assays for log (miniaturized shake-flask method) and (LC-MS/MS-based depletion assay) determination were compared to an ensemble of models.
View Article and Find Full Text PDFJ Xenobiot
January 2025
School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Chlorpyrifos (CPF) is a broad-spectrum organophosphate insecticide. Long-term exposure to low levels of CPF is associated with neurodevelopmental and neurodegenerative disorders. The mechanisms leading to these effects are still not fully understood.
View Article and Find Full Text PDFAdv Mater
January 2025
Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Bari, 70125, Italy.
DNA can be readily amplified through replication, enabling the detection of a single-target copy. A comparable performance for proteins in immunoassays has yet to be fully assessed. Surface-plasmon-resonance (SPR) serves as a probe capable of performing assays at concentrations typically around 10⁻⁹ molar.
View Article and Find Full Text PDFTurkiye Parazitol Derg
January 2025
Pamukkale University Faculty of Medicine, Department of Medical Microbiology, Denizli, Türkiye.
Objective: This study retrospectively evaluates our laboratory immunoglobulin (Ig)M, IgG antibody and avidity test results to determine the distribution of the pathogen according to sex, age, clinics and years.
Methods: The serum samples sent to Pamukkale University Healthcare Research and Practice Hospital's Medical Microbiology laboratory between January 2016 and December 2023 were evaluated for seropositivity. antibodies and avidity testing were studied using chemiluminescent microparticle immunological testing method (Abbott Architect i2000SR, Weisbaden, Germany).
BMC Plant Biol
January 2025
MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Science, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
Background: NITRATE TRANSPORTER 1.1 (NRT1.1) functions as a dual affinity nitrate transceptor regulated by phosphorylation at threonine residue 101 (T101).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!