The purpose of this study was to investigate whether the preference of periventricular hemorrhage (PVH) for the left hemisphere is due to asymmetry of cerebral blood flow (CBF) and, if so, whether this asymmetry is due to patent ductus arteriosus (PDA). Thirty-three preterm newborns at risk for PVH were followed during their first 5 days after birth. Internal carotid CBF velocity (CBFV) and the flow direction in the common pulmonary artery, both determined by ultrasound Doppler, served as measures of CBF and PDA, respectively. The difference between right and left CBFV was analyzed statistically, with outcome, PDA, capillary PCO2, behavior, heart rate, and the average of right and left CBFV as covariates. Infants who developed PVH (n = 7) exhibited CBFV asymmetry to the disadvantage of the left side. This finding was partially attributable to PDA. Without PVH there was no significant CBFV asymmetry. Because all hemorrhages were bilateral, a relationship with the side of the hemorrhage could not be explored. In conclusion, asymmetry of CBFV is not normal, but is associated with PVH and PDA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0887-8994(95)00193-xDOI Listing

Publication Analysis

Top Keywords

asymmetry cerebral
8
cerebral blood
8
blood flow
8
ultrasound doppler
8
preterm newborns
8
left cbfv
8
cbfv asymmetry
8
asymmetry
6
cbfv
6
pvh
5

Similar Publications

D1 Receptor Functional Asymmetry at Striatonigral Neurons: A Neurochemical and Behavioral Study in Male Wistar Rats.

J Neurosci Res

January 2025

Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico, Mexico.

Lateralization of motor behavior, a common phenomenon in humans and several species, is modulated by the basal ganglia, a site pointed out for the interhemispheric differences related to lateralization. Our study aims to shed light on the potential role of the striatonigral D1 receptor in functional asymmetry in normal conditions through neurochemical and behavioral means. We found that D1 receptor activation and D1/D3 receptor coactivation in striatonigral neurons leads to more cAMP production by adenylyl cyclase in the striatum and GABA release in their terminals in the right hemisphere compared to the left.

View Article and Find Full Text PDF

Introduction The degree to which each human brain hemisphere governs specific cognitive processes, such as language and handedness (the preference or dominance of one hand over the other), varies across individuals. Research has explored the nature of language laterality in left-handed (LH) individuals, indicating that left-hemisphere dominance for language is commonly observed across both left- and right-handed populations. Advanced imaging techniques, including functional transcranial Doppler sonography and fMRI, have revealed subtle differences in language lateralization between LH and right-handed (RH) individuals, particularly in semantic processing tasks.

View Article and Find Full Text PDF

Background/aim: Functional asymmetry in the upper extremities may occur in infants with neuromotor problems due to neurodevelopmental or musculoskeletal disorders. The aim of this study was to investigate the validity and reliability of the Turkish version of the Infant Motor Activity Log (IMAL-T), which assesses the frequency (how often) and quality (how well) of the affected arm usage during activities in infants with functional asymmetry in the upper extremities.

Materials And Methods: The IMAL-T was administered face-to-face to the parents of 102 infants [60 infants at high risk of developing cerebral palsy (CP) and 42 infants with brachial plexus birth injury (BPBI)], aged 6-24 months, with functional asymmetry in the upper extremities.

View Article and Find Full Text PDF

Altered Nigral Amide Proton Transfer Imaging Signal Concordant With Motor Asymmetry in Parkinson's Disease: A Multipool CEST MRI Study.

NMR Biomed

February 2025

Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.

Asymmetry is a natural characteristic of Parkinson's disease (PD), which can be used to distinguish PD from atypical parkinsonism. Chemical exchange saturation transfer (CEST) has demonstrated value in reflecting the subtle changes related to neuron loss and abnormal protein accumulation in PD but has not been used to investigate asymmetry in PD. This study aimed to examine asymmetrical changes in the mesencephalic nucleus of PD patients with motor asymmetry using four-pool CEST analysis and to explore the relationship between imaging asymmetry and motor asymmetry.

View Article and Find Full Text PDF
Article Synopsis
  • Motor symptom laterality in Parkinson's Disease (PD) impacts both motor and nonmotor symptoms, potentially altering patient prognosis, with compensatory mechanisms in the brain's dominant hemisphere playing a key role.
  • This study investigated the microstructural changes in the corpus callosum (CC), the brain's main connector between hemispheres, in 201 right-handed PD patients (split between left- and right-onset) compared to 100 healthy controls using advanced imaging techniques.
  • Findings revealed reduced free water and fractional anisotropy, along with increased mean diffusivity in the CC of patients with left-side PD onset, highlighting the relationship between brain structure and disease symptoms.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!