Although metformin is an important antidiabetic, its mechanism of action is still unknown. To study its mechanism, we examined metformin stimulation of insulin action on the Xenopus oocyte. Similar to therapeutic concentrations, maximal stimulation of insulin-induced meiotic cell division was achieved at about 1-10 microg/ml (or 7.7-77 /microM) metformin. An equivalent concentration of metformin was required to elevate receptor tyrosine kinase activity (in whole cells or a membrane-cortex preparation) and, through this tyrosine kinase activation, inositol 1,4,5-trisphosphate (IP3) production. With whole cells, the preincubation time for metformin stimulation of insulin action (approximately 1 h) was equivalent to the time required for metformin to maximize tyrosine phosphorylation and raise IP3, levels. With the membrane-cortex preparation, metformin was active within minutes; thus, metformin may act at an intracellular site. Since metformin can increase IP3, mass, we prevented elevation of calcium by prior microinjection of a calcium chelator or heparin (a drug that inhibits IP3 binding to the IP3 receptor). Both the chelator and heparin blocked metformin stimulation of insulin action on whole cells. Since microinjection of IP3, also stimulates insulin action, metformin may stimulate insulin action by elevation of intracellular calcium in addition to activation of the receptor tyrosine kinase.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.137.7.8770923DOI Listing

Publication Analysis

Top Keywords

insulin action
20
tyrosine kinase
16
metformin
12
receptor tyrosine
12
metformin stimulation
12
stimulation insulin
12
kinase activity
8
inositol 145-trisphosphate
8
membrane-cortex preparation
8
chelator heparin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!