This study tested the hypothesis that intrarenal kinins play a regulatory role in electrolyte excretion by altering Cl- absorption in the collecting duct. We measured Cl- and insulin concentrations in tubular fluid samples obtained from medullary collecting ducts (MCD) of Dahl/Rapp salt-resistant (SR/ Jr) rats by microcatheterization of ducts of Bellini before and after treatment with the bradykinin receptor antagonist HOE-140. Tubular fluid was obtained from paired terminal inner medullary (t-IMCD) and outer medullary (OMCD) collecting duct sites of the left kidney. HOE-140 (n = 7) or vehicle (n = 5) was infused intravenously, and the collections were repeated. HOE-140 did not alter glomerular filtration rate but decreased urine flow rate (P < 0.05) and absolute and fractional Cl- excretion (P < 0.01). HOE-140 did not alter the fraction of filtered Cl- delivered (FDCl) to the OMCD but decreased FDCl to the t-IMCD from 2.3 +/- 0.3 to 1.3 +/- 0.3% (P < 0.05). The fraction of filtered Cl- absorbed per millimeter between the collection sites was increased from 0.2 +/- 0.1 to 0.6 +/- 0.1% (P < 0.05). Fractional absorption of water along the MCD was also increased (P < 0.05). No changes in excretory function or tubular Cl- or water absorption were observed in vehicle-treated rats. These studies show that kinin B2 receptor blockade enhances Cl- and water absorption in the MCD, a finding that supports a role of renal kinins in the regulation of NaCl and water excretion.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.1996.271.2.R352DOI Listing

Publication Analysis

Top Keywords

water absorption
12
collecting duct
12
bradykinin receptor
8
receptor antagonist
8
medullary collecting
8
tubular fluid
8
hoe-140 alter
8
fraction filtered
8
filtered cl-
8
+/- +/-
8

Similar Publications

Adaptation responses to salt stress in the gut of .

Anim Cells Syst (Seoul)

January 2025

Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Republic of Korea.

Osmoregulation is essential for the survival of aquatic organisms, particularly teleost fish facing osmotic challenges in environments characterized by variable salinity. While the gills are known for ion exchange, the intestine's role in water and salt absorption is gaining attention. Here, we investigated the adaptive responses of the intestine to salinity stress in guppies (), observing significant morphological and transcriptomic alterations.

View Article and Find Full Text PDF

Ecological concrete by partially substitution of cement with Cameroonian corn stover ash.

Heliyon

January 2025

Mechanics Laboratory, Doctoral Training Unit in Engineering Sciences, Doctoral School of Fundamental and Applied Sciences, University of Douala, P.O. Box: 2701, Douala, Cameroon.

This study focuses on the influence of the partial substitution of cement by Cameroonian corn stover ash (CCSA) on the physical and mechanical behavior of concrete. For this, as materials used, one has first the corn stovers coming from the Bandjoun town in the Koung-khi division, in the West region of Cameroon, which are used to obtain the ashes, while the sand used, came from the Sanaga River in the coastal region of Cameroon. In order to obtain the CCSA, the corn stover is calcined in an oven at 600 °C for 6 h and then characterized; the characterization included infrared spectrometry, X-ray fluorescence spectrometry, fineness of grinding, and absolute density.

View Article and Find Full Text PDF

Purpose: Treatment of severe burn wound injury remains a significant clinical challenge as serious infections/complex repair process and irregulating inflammation response. Human umbilical cord mesenchymal stem cells (hUC-MSCs) have a multidirectional differentiation potential and could repair multiple injuries under appropriate conditions. Poly(L-lysine)-graft-4-hydroxyphenylacetic acid (PLL-g-HPA) hydrogel is an enzyme-promoted biodegradable in hydrogel with good water absorption, biocompatibility and anti-bacterial properties.

View Article and Find Full Text PDF

Optimizing photocatalysis electron spin control.

Chem Soc Rev

January 2025

Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.

Solar-driven photocatalytic technology holds significant potential for addressing energy crisis and mitigating global warming, yet is limited by light absorption, charge separation, and surface reaction kinetics. The past several years has witnessed remarkable progress in optimizing photocatalysis electron spin control. This approach enhances light absorption through energy band tuning, promotes charge separation by spin polarization, and improves surface reaction kinetics strengthening surface interaction and increasing product selectivity.

View Article and Find Full Text PDF

Acid rain can significantly undermine the structural integrity and seismic resilience of concrete structures, posing substantial risks of catastrophic failures and jeopardizing safety. However, studies on the seismic behavior of reinforced concrete (RC) columns affected by acid rain corrosion remain nascent. Therefore, this study explored the impact of acid-rain corrosion extent and axial compression ratio on the seismic behavior of RC columns that experienced flexural failure using an artificial rapid corrosion method and pseudo-static test in sequence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!