A microbial culture collection composed of 1820 bacterial strains, including 298 actinomycete strains, was established from the roots of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) seedlings harvested from conifer nurseries and forest sites. Two hundred and thirty-four strains inhibited the growth of Fusarium, Cylindrocarpon, and (or) Pythium spp. in in vitro assays. A significantly greater proportion of bacterial strains from actinomycete genera exhibited antifungal properties compared with bacterial strains from nonactinomycete genera. Eighty-nine percent of identified inhibitory strains were Streptomyces, Streptoverticillium, Bacillus, Pseudomonas, or Burkholderia species. The actinomycete species were isolated almost exclusively from forest seedlings. Recovery of inhibitory strains representing 29 microbial species was enhanced using a variety of methods to isolate microorganisms from the roots of seedlings from nursery and forest sites. Bacterial strains (including actinomycete strains) with antifungal activity were tested for in vitro growth inhibition of six clinical human bacterial pathogens (Enterococcus faecalis, Staphylococcus aureus, Klebsiella pneumoniae, Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa). Forty-eight percent of the tested strains inhibited one or more human pathogens, Inhibitory activity towards fungal and bacterial pathogens was strain specific, not species specific, and many inhibitory strains exhibited broad-spectrum activity. Strains with antifungal activity against several conifer root pathogens were also more likely to inhibit multiple species of clinical bacterial pathogens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1139/m96-094 | DOI Listing |
PLoS One
January 2025
Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, Karnataka, India.
Background: RNA polymerase-binding protein A (RbpA) is an actinomycetes-specific protein crucial for the growth and survival of the pathogen Mycobacterium tuberculosis. Its role is essential and influences the transcription and antibiotic responses. However, the regulatory mechanisms underlying RbpA-mediated transcription remain unknown.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America.
Virulent microbes produce proteins that interact with host cell targets to promote pathogenesis. For example, virulent bacterial pathogens have proteins called effectors that are typically enzymes and are secreted into host cells. To detect and respond to the activities of effectors, diverse phyla of host organisms evolved effector-triggered immunity (ETI).
View Article and Find Full Text PDFMicrob Genom
January 2025
Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Microbial Genome Research, Braunschweig, Germany.
Genomic data on from the African continent are currently lacking, resulting in the region being under-represented in global analyses of infection (CDI) epidemiology. For the first time in Nigeria, we utilized whole-genome sequencing and phylogenetic tools to compare isolates from diarrhoeic human patients (=142), livestock (=38), poultry manure (=5) and dogs (=9) in the same geographic area (Makurdi, north-central Nigeria) and relate them to the global population. In addition, selected isolates were tested for antimicrobial susceptibility (=33) and characterized by PCR ribotyping (=53).
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
Background: Pseudomonas aeruginosa's inherent and adapted resistance makes this pathogen a serious problem for antimicrobial treatments. Furthermore, its biofilm formation ability is the most critical armor against antimicrobial therapy, and the virulence factors, on the other hand, contribute to fatal infection and other recalcitrant phenotypic characteristics. These capabilities are harmonized through cell-cell communication called Quorum Sensing (QS), which results in gene expression regulation via three major interconnected circuits: las, rhl, and pqs system.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
February 2024
School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China.
While biotechnologies offer eco-friendly solutions for eliminating air contaminants, there is a scarcity of research examining the impacts of microbial purification of air pollutants on the structure and function of air microbial communities. In this study, we explored a Lactobacillus paracasei B1 (LAB) agent for removing ammoniacal odour. The impacts of LAB on air bacterial community were revealed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!