The effects of a 4-week deficiency in polyunsaturated fatty acids (PUFA) in isolated rat hepatocytes have been investigated for oxidative phosphorylation and fatty acid, dihydroxyacetone (DHA) or glycerol metabolism. Oxygen uptake was significantly increased (by 20%) with or without fatty acid addition (octanoate or oleate) in the PUFA-deficient group compared with controls. The effect persisted after oligomycin addition but not after that of potassium cyanide, leading to the conclusion that, in these intact cells, the mitochondria were uncoupled. The PUFA-deficient group exhibited a significant decrease in the cytosolic ATP/ADP ratio, whereas the mitochondrial ratio was not affected. PUFA deficiency led to a 16% decrease in DHA metabolism owing to a 34% decrease in glycerol kinase activity; the significant decrease in the ATP/ADP ratio was accompanied by an increase in the fractional glycolytic flux. In contrast, glycerol metabolism was significantly enhanced in the PUFA-deficient group. The role of the glycerol 3-phosphate dehydrogenase step in this stimulation was evidenced in hepatocytes perifused with glycerol and octanoate in the presence of increased concentrations of 2,4-dinitrophenol (Dnp): uncoupling with Dnp led to an enhancement of glycerol metabolism, as found in PUFA deficiency, although it was more pronounced than in controls. The matrix/cytosol gradients for redox potential and ATP/ADP ratio were lower in cells from PUFA-deficient rats, suggesting a decreased mitochondrial membrane potential in accordance with the uncoupling effect. Moreover, a doubling of the mitochondrial glycerol 3-phosphate dehydrogenase activity in the PUFA-deficient group compared with controls led us to conclude that the activation of glycerol metabolism is the consequence of two mitochondrial effects: uncoupling and an increase in glycerol 3-phosphate dehydrogenase activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1217538 | PMC |
http://dx.doi.org/10.1042/bj3170667 | DOI Listing |
ACS Synth Biol
January 2025
College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharides (HMOs). 2'-FL exhibits great benefits for infant health, such as preventing infantile diarrhea and promoting the growth of intestinal probiotics. The microbial cell factory technique has shown promise for the massive production of 2'-FL.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Key Laboratory of Smart Breeding (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Tianjin Agricultural University, Tianjin, 300392, P.R. China.
Revealing the differences of metabolite profiles of H. pluvialis during hyperaccumulation of astaxanthin under the high salinity and nitrogen deficiency conditions was the key issues of the present study. To investigate the optimum NaCl and NaNO concentration and the corresponding metabolic characteristic related to the astaxanthin accumulation in H.
View Article and Find Full Text PDFJHEP Rep
January 2025
Department of Microbiology and Immunology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Background & Aims: Hepatic steatosis, characterized by lipid accumulation in hepatocytes, is a key diagnostic feature in patients with chronic hepatitis C virus (HCV) infection. This study aimed to clarify the involvement of phospholipid metabolic pathways in the pathogenesis of HCV-induced steatosis.
Methods: The expression and distribution of lipid species in the livers of human liver chimeric mice were analyzed using imaging mass spectrometry.
is a microorganism for production of 1,3-propanediol (1,3-PDO) and butanol, but suffers from lacking genetic tools for metabolic engineering to improve product titers. Furthermore, previous studies of have mainly focused on single genomic modification. The aim of this work is the development and application of a method for modification of multiple gene targets in the genome of .
View Article and Find Full Text PDFBioresour Technol
January 2025
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; National Experimental Teaching Center for Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China. Electronic address:
Phenazine-1,6-dicarboxylic acid (PDC) is a precursor of complex substituted phenazines used as pesticides and pharmaceuticals. The PDC biosynthesis exists the low production and the high proportion of by-products phenazine-1-carboxylic acid (PCA) derivatives in Pseudomonas P3△A. Herein, PDC production were improved by systematic metabolic engineering and synthetic regulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!