A theoretical model for the cytoplasmic membrane topology of the Rhodobacter capsulatus PucC protein was derived and tested experimentally with pucC'::pho'A gene fusions. The alkaline phosphatase (AP) activities of selected fusions were assayed, and the resultant pattern of high and low activity was compared with that of the theoretical model. High AP activity correlated well with fusion joints located in regions predicted to be periplasmic, and most fusions in predicted cytoplasmic loops yield approximately 1/20th as much activity. Replacement of pho'A with lac'Z in nine of the fusions confirmed the topology, as beta-galactosidase activities were generally reciprocal to the corresponding AP activity. On the basis of the theoretical analysis and the information provided by the activities of fusions, a model for PucC topology in which there are 12 membrane-spanning segments and both the N and C termini are located in the cytoplasm is proposed. Translationally out-of-frame pucC::phoA fusions were expressed in an R. capsulatus delta pucC strain. None of the fusions missing only one or two of the proposed C-terminal transmembrane segments restored the wild-type phenotype, suggesting that the C terminus of PucC is important for function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC178260PMC
http://dx.doi.org/10.1128/jb.178.16.4801-4806.1996DOI Listing

Publication Analysis

Top Keywords

rhodobacter capsulatus
8
capsulatus pucc
8
pucc protein
8
theoretical model
8
fusions
7
pucc
5
topological analysis
4
analysis rhodobacter
4
protein effects
4
effects c-terminal
4

Similar Publications

Introduction: The present study examined Polyhydroxy butyrate production (PHB) potential of different photosynthetic microbes such as Chlorella vulgaris, Scenedesmus obliquus and Rhodobacter capsulatus-PK under different nutrient conditions. Biodegradable bioplastics, such as Poly-β-hydroxybutyrates (PHB), derived from these microbes provide a sustainable alternative to conventional petroleum-based nondegradable plastics.

Background: As the demand for clean and sustainable alternatives rises, bio-plastic is gaining attention as a viable substitute to conventional plastics.

View Article and Find Full Text PDF

The small membrane protein CcoS is involved in cofactor insertion into the cbb-type cytochrome c oxidase.

Biochim Biophys Acta Bioenerg

January 2025

Institut für Biochemie und Molekularbiologie, ZBMZ, Faculty of Medicine, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany. Electronic address:

Respiratory complexes, such as cytochrome oxidases, are cofactor-containing multi-subunit protein complexes that are critically important for energy metabolism in all domains of life. Their intricate assembly strictly depends on accessory proteins, which coordinate subunit associations and cofactor deliveries. The small membrane protein CcoS was previously identified as an essential assembly factor to produce an active cbb-type cytochrome oxidase (cbb-Cox) in Rhodobacter capsulatus, but its function remained unknown.

View Article and Find Full Text PDF

Enhanced photo-fermentative hydrogen production by constructing Rhodobacter capsulatus-ZnO/ZnS hybrid system.

Bioresour Technol

December 2024

State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Xianning West Road, Xi'an 710049, China. Electronic address:

This study incorporated ZnO/ZnS nanoparticles with Rhodobacter capsulatus SB1003, forming a hybrid system to promote photo-fermentative hydrogen production. The results indicate that the material's photocatalytic activity and concentration significantly affected hydrogen yield. The addition of ZnO/ZnS exhibited a more significant auxiliary effect than ZnO and achieved an approximately 30% increase in hydrogen production compared to the control group.

View Article and Find Full Text PDF

Protein engineering is an established method for tailoring enzymatic reactivity. A commonly used method is directed evolution, where the mutagenesis and natural selection process is mimicked and accelerated in the laboratory. Here, we describe a reliable method for generating saturation mutagenesis libraries by Golden Gate cloning in a broad host range plasmid containing the pBBR1 replicon.

View Article and Find Full Text PDF
Article Synopsis
  • The PufX protein helps certain purple bacteria with the process of exchanging two important molecules, ubiquinol and ubiquinone, in their reaction centers where they convert light into energy.
  • Scientists studied this process in a type of purple bacteria called Rhodobacter capsulatus, using a special technique to see what happens when the bacteria were illuminated with light.
  • They found that in bacteria without the PufX protein, the reactions weren’t as efficient, meaning that the way the molecule structure was set up made it harder for the needed molecules to reach where they needed to be in the reaction center.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!