The synthesis of a series of 1,8-dihydroxy-9(10H)-anthracenones bearing sulfur-linked substituents in the 10-position is described. These compounds were evaluated for their ability to inhibit the growth of the human keratinocyte cell line HaCaT and the 5- and 12-lipoxygenase enzymes in bovine polymorphonuclear leukocytes and mouse epidermal homogenate, respectively. In addition, the following redox properties of the compounds were determined: reactivity against 2,2-diphenyl-1-picrylhydrazyl, generation of hydroxyl radicals as measured by deoxyribose degradation, and inhibition of lipid peroxidation in model membranes. Compounds 4e and 4h of this series compare favorably in the cellular assays with the antipsoriatic anthralin. They have the combined inhibitory action against leukotriene B4 and 12(S)-HETE formation and are highly potent antiproliferative agents against keratinocyte growth. In contrast to anthralin, 4h, 1,8-dihydroxy-10-[(4-hydroxyphenyl)thio]-9(10H)-anthracenone, is not cytotoxic as documented by the LDH activity released from cytoplasm of keratinocytes and does not enhance lipid peroxidation in model membranes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jm960259l | DOI Listing |
Mol Med
January 2025
The First People's Hospital of Lin'an District, No. 360, Yikang Street, Jinnan Subdistrict, Lin'an District, Hangzhou, Zhejiang, 311300, China.
Background: Myocardial infarction (MI) remains a leading cause of mortality globally, often resulting in irreversible damage to cardiomyocytes. Ferroptosis, a recently identified form of regulated cell death driven by iron-dependent lipid peroxidation, has emerged as a significant contributor to post-MI cardiac injury. The endoplasmic reticulum (ER) stress response has been implicated in exacerbating ferroptosis.
View Article and Find Full Text PDFBiochimie
January 2025
Laboratory of Biochemistry and Molecular Neuropharmacology (LABIONEM), Graduate Program in Biochemistry and Bioprospecting (PPGBBio), Chemical, Pharmaceutical, and Food Sciences Center (CCQFA), Federal University of Pelotas (UFPel), 96010-900 RS, Brazil. Electronic address:
Oxidative stress arises from an imbalance between reactive species (RS) production and the antioxidant defense, increasing the brain susceptibility to neurodegenerative and psychiatric diseases. Besides, changes in the expression or activity of neurotransmitter metabolism enzymes, such as monoamine oxidases (MAO), are also associated with mental disorders, including depression. Considering this, antioxidant and MAO-A activity inhibitory potential of six 2,3-chalcogenodihydrobenzofurans (2,3-DHBF) was investigated through in vitro and in silico tests.
View Article and Find Full Text PDFJ Control Release
January 2025
School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China. Electronic address:
Osteoarthritis is the most prevalent form of arthritis, and a leading cause of pain and long-term disability. Dysregulation of redox homeostasis is a key feature in the pathological progression of osteoarthritis that amplifies the inflammatory response, aggravates synovitis and accelerates cartilage degradation. Herein, a hemin and chitosan-mediated antioxidant gel inducing ROS conversion (hc-MAGIC) was constructed to targeting oxidative stress for osteoarthritis treatment.
View Article and Find Full Text PDFAnalyst
January 2025
Jiangxi Provincial Key Laboratory of Organic Functional Molecules; Institute of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
Glutathione (GSH) plays an important role in maintaining redox homeostasis in biological systems. Development of reliable glutathione sensors is of great significance to better understand the role of biomolecules in living cells and organisms. Based on the advantages of the photophysical properties of iridium complexes, we proposed a "turn-on" phosphorescent sensor.
View Article and Find Full Text PDFACS Electrochem
January 2025
Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.
We demonstrate the application and benefit of optically transparent carbon electrodes (OTCEs) for single entity nanoelectrochemistry. OTCEs are prepared by pyrolyzing thin photoresist films on fused quartz coverslips to create conductive, transparent, thin films. Optical, electrical, topographical, and electrochemical properties of OTCEs are characterized to evaluate their suitability for single entity electrochemistry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!