A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The (alpha2-->8)-linked polysialic acid capsule of group B Neisseria meningitidis modifies multiple steps during interaction with human macrophages. | LitMetric

Group B Neisseria meningitidis causes systemic disease, including meningitis, after initial colonization and subsequent penetration of nasopharyngeal mucosa, a tissue which is richly populated by macrophages. In an initial effort to characterize the interaction of N. meningitidis and mature human macrophages, the influence of the alpha2-->8) -linked polysialic acid capsule on the interaction of N. meningitidis with human monocyte-derived macrophages was investigated with a capsulate case isolate and an isogenic Tn916-derived noncapsulate transformant. The capsulate strain was fourfold less adherent to the macrophage surface after cold incubation, although adherence of both strains was significantly increased after opsonization with nonimmune C5-depleted serum. When opsonized inocula were adjusted so that they adhered to macrophages in equal numbers, the two strains were internalized at equivalent rates and both entered membrane-bound compartments (phagosomes). Colocalization of bacteria with the late endosomal and lysosomal marker lysosome-associated membrane protein revealed that fusion of lysosomes with phagosomes containing the capsulate organism was significantly reduced 10 and 30 min after entry, but by 1 h, no difference between the strains was observed. Once internalized, meningococci were effectively killed, although more rapid killing of the capsulate strain was observed over the first 3 h. These results indicate that the (alpha2-->8)-linked polysialic acid capsule modifies the interaction of meningococci with human macrophages at multiple steps, including adherence to the macrophage surface and phagosome-lysosome fusion. Moreover, the discordance between the kinetics of phagosome- lysosome fusion and bacterial killing suggests that a nonlysosomal mechanism may be responsible for a significant fraction of macrophage killing of N. meningitidis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC174209PMC
http://dx.doi.org/10.1128/iai.64.8.3210-3217.1996DOI Listing

Publication Analysis

Top Keywords

polysialic acid
12
acid capsule
12
human macrophages
12
alpha2-->8-linked polysialic
8
group neisseria
8
neisseria meningitidis
8
multiple steps
8
interaction meningitidis
8
capsulate strain
8
macrophage surface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!