The targeted disruption of the TGF-beta1 gene in mice (TGF-beta1 -/-) leads to extensive inflammation in vital organs, cachexia, and death within 3 to 4 wk. Significant inflammatory lesions develop initially in the periductal regions of the salivary glands and escalate as the animals become symptomatic. These inflammatory sites, characterized by lymphocytic infiltration and increased proliferation, cytokine mRNA expression, and IgG-positive cells, resemble lesions of Sjögren's syndrome. Moreover, the inflammatory pathology, enhanced MHC expression, and Ab production are consistent with an autoimmune-like etiology. Glandular atrophy and loss of acini with reduced saliva production appear to contribute to the wasting syndrome characteristic of the TGF-beta1 -/- mice. To determine whether the structural and functional defects were developmental due to the absence of TGF-beta1 or secondary to the inflammation, TGF-beta1 -/- mice were treated with synthetic fibronectin peptides, which block leukocyte infiltration. Daily systemic injections of RGD, CS-1, and/or peptides derived from the heparin-binding region of the A chain not only prevented leukocyte infiltration in the salivary glands of the TGF-beta1 -/- mice, but also reversed the acinar and ductal derangements. These data suggested that salivary gland development is not jeopardized in the absence of TGF-beta1, but that the extensive infiltration of inflammatory cells compromises glandular structure and function. The essential nature of TGF-beta1 in controlling inflammatory and immune processes is confirmed by these studies. Moreover, these TGF-beta1 -/- mice provide an important model of autoimmune disease that can be used in the design of therapeutic interventions.
Download full-text PDF |
Source |
---|
Environ Toxicol
January 2025
Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China. Electronic address:
In previous reports, we highlighted the significant involvement of SMYD3, a histone methyltransferase (HMT), in various aspects of cancer progression, including cell adhesion, migration, and invasion. In this study, we delved deeper into understanding the relationship between SMYD3 and epithelial-mesenchymal transition (EMT) both in cell lines and clinical samples. Our investigation uncovered a notable correlation between heightened SMYD3 expression and the presence of EMT markers in human breast cancer tissues.
View Article and Find Full Text PDFCell Death Discov
January 2025
Department of Gastroenterology, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People's Hospital of Shenzhen, Shenzhen, 518172, China.
Intestinal fibrosis, as a late-stage complication of inflammatory bowel disease (IBD), leads to bowel obstruction and requires surgical intervention, significantly lowering the quality of life of affected patients. SAA3, a highly conserved member of the serum amyloid A (SAA) apolipoprotein family in mice, is synthesized primarily as an acute phase reactant in response to infection, inflammation and trauma. An increasing number of evidence suggests that SAA3 exerts a vital role in the fibrotic process, even though the underlying mechanisms are not yet fully comprehended.
View Article and Find Full Text PDFJ Recept Signal Transduct Res
January 2025
Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan.
Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.
View Article and Find Full Text PDFJ Clin Med
January 2025
Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube 755-8505, Japan.
Unrelated bone marrow transplantation (BMT) is a curative treatment for hematological malignancies. While HLA mismatch is a recognized risk factor in unrelated BMT, the significance of non-HLA single nucleotide polymorphisms (SNPs) remains uncertain. Cytokines play key roles in several aspects of unrelated BMT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!