AI Article Synopsis

Article Abstract

Numerous proteins on the external surface of the plasma membrane are anchored by glycosylated derivatives of phosphatidylinositol (GPI), rather than by hydrophobic amino acids embedded in the phospholipid bilayer. These GPI anchors are cleaved by phosphatidylinositol-specific phospholipases C (PI-PLCs) to release a water-soluble protein with an exposed glycosylinositol moiety and diacylglycerol, which remains in the membrane. We have previously determined the crystal structure of Bacillus cereus PI-PLC, the enzyme which is widely used to release GPI-anchored proteins from membranes, as free enzyme and also in complex with myo-inositol [Heinz, D.W., Ryan, M. Bullock, T.L., & Griffith, O. H. (1995) EMBO J. 14, 3855-3863]. Here we report the refined 2.2 A crystal structure of this enzyme complexed with a segment of the core of all GPI anchors, glucosaminyl(alpha 1-->6)-D-myo-inositol [GlcN-(alpha 1-->6)Ins ]. The myo-inositol moiety of GlcN(alpha 1-->6)Ins is well-defined and occupies essentially the same position in the active site as does free myo-inositol, which provides convincing evidence that the enzyme utilizes the same catalytic mechanism for cleavage of PI and GPI anchors. The myo-inositol moiety makes several specific hydrogen bonding interactions with active site residues. In contrast, the glucosamine moiety lies exposed to solvent at the entrance of the active site with minimal specific protein contacts. The glucosamine moiety is also less well-defined, suggesting enhanced conformational flexibility. On the basis of the positioning of GlcN(alpha 1-->6)Ins in the active site, it is predicted that the remainder of the GPI-glycan makes little or no specific interactions with B. cereus PI-PLC. This explains why B. cereus PI-PLC can cleave GPI anchors having variable glycan structures.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi9606105DOI Listing

Publication Analysis

Top Keywords

gpi anchors
20
active site
16
crystal structure
12
cereus pi-plc
12
bacillus cereus
8
glucosaminylalpha 1-->6-d-myo-inositol
8
myo-inositol moiety
8
glcnalpha 1-->6ins
8
glucosamine moiety
8
gpi
6

Similar Publications

Synthesis of Glycosylphosphatidylinositol Analogues with an Unnatural -D-Glucosamine-(1→6)--Inositol Motif.

J Carbohydr Chem

April 2024

Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, FL 32611, USA.

Glycosylphosphatidylinositol (GPI) anchors contain a unique α-D-glucosamine-(1→6)--inositol [αGlcN(1,6)Ins] motif in their conserved core structure. To facilitate investigations of the functional roles of this structural motif, two GPI analogues containing unnatural βGlcN(1,6)Ins, instead of αGlcN(1,6)Ins, and an alkyne group at different positions of the GPI core were designed and synthesized. To this end, an orthogonally protected pseudopentasaccharide derivative of GPIs with the βGlcN(1,6)Ins motif was convergently constructed via [3+2] glycosylation and used as the common intermediate to prepare both GPI analogues by streamlined synthetic protocols.

View Article and Find Full Text PDF

RPS23RG1 inhibits SORT1-mediated lysosomal degradation of MDGA2 to protect against autism.

Theranostics

January 2025

Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.

Mutations in the synaptic protein MAM domain containing glycosylphosphatidylinositol anchor 2 (MDGA2) have been associated with autism spectrum disorder (ASD). Therefore, elucidating the regulatory mechanisms of MDGA2 can help develop effective treatments for ASD. Liquid chromatography-tandem mass spectrometry was carried out to identify proteins interacting with the extracellular domain of RPS23RG1 and with MDGA2, followed by co-immunoprecipitation assays to confirm protein-protein interactions.

View Article and Find Full Text PDF

Identification of pennaceous barbule cell factor (PBCF), a novel gene with spatiotemporal expression in barbule cells during feather development.

Gene

January 2025

Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan; Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 3-1-1 Kitaku, Tsushimanaka, Okayama 700-8530, Japan. Electronic address:

Bird contour feathers exhibit a complex hierarchical structure composed of a rachis, barbs, and barbules, with barbules playing a crucial role in maintaining feather structure and function. Understanding the molecular mechanisms underlying barbule formation is essential for advancing our knowledge of avian biology and evolution. In this study, we identified a novel gene, pennaceous barbule cell factor (PBCF), using microarray analysis, RT-PCR, and in situ hybridization.

View Article and Find Full Text PDF

Comprehensive analysis of the LTPG gene family in willow: Identification, expression profiling, and stress response.

Int J Biol Macromol

January 2025

Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China; Key Lab of Landscape Plant Genetics and Breeding, Nantong 226000, China. Electronic address:

The non-specific lipid-transfer proteins (LTPs), particularly the glycosylphosphatidylinositol (GPI)-anchored LTPs (LTPGs), play pivotal roles in various plant physiological functions, particularly in the context of environmental stress adaptation. Despite their importance, LTPGs in willow (Salix matsudana), an ecologically and economically important species, remains poorly understood. This study systematically identified and characterized 30 SmLTPGs in the S.

View Article and Find Full Text PDF

Neuronal CD59 isoforms IRIS-1 and IRIS-2 as regulators of neurotransmitter release with implications for Alzheimer's disease.

Alzheimers Res Ther

January 2025

Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, 214-28, Sweden.

We have previously demonstrated that the intracellular, non-GPI anchored CD59 isoforms IRIS-1 and IRIS-2 (Isoforms Rescuing Insulin Secretion 1 and 2) are necessary for insulin secretion from pancreatic β-cells. While investigating their expression across human tissues, we identified IRIS-1 and IRIS-2 mRNA in the human brain, though their protein expression and function remained unclear. This study shows the presence of both IRIS-1 and 2 proteins in the human brain, specifically in neurons and astrocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!