Background: Cardiac preconditioning is an adaptation of cardiomyocytes that promotes tolerance to a subsequent ischemic insult. Adenosine receptor signaling is proposed as a mediator of preconditioning, but its mechanism of protection remains unknown. We hypothesized that protection against hypoxia-reoxygenation (H/R) injury could be conferred in a rat ventricle by adenosine-mediated protein kinase C (PKC) activation and that adenosine-mediated cardioprotection could be extended to human ventricular muscle.
Methods: Isolated rat and human ventricular muscle (VM) strips were subjected to 30 minutes of hypoxia and 60 minutes of reoxygenation (H/R control). The VM was pretreated with 125 mumol/L adenosine, an adenosine antagonist ((p-Sulfophenyl) theophylline [SPT] 50 mumol/L) and adenosine (adenosine + SPT), or with a PKC inhibitor (chelerythrine, 10 mumol/L) and adenosine (adenosine + chelerythrine) before H/R Developed force (DF) and tissue creatine kinase (CK) activity were assessed at end reoxygenation. Human trabeculae were obtained from diseased explanted hearts at cardiac transplantation and were also subjected to H/R injury. Human VM was pretreated with adenosine (125 mumol/L) before H/R injury. Results are expressed as mean +/- standard error of mean.
Results: In the rat, adenosine pretreatment conferred protection of DF against H/R injury (adenosine, 62% +/- 6%; H/R control, 27% +/- 2%, p < 0.05). Adenosine + SPT or adenosine + chelerythrine eliminated the functional recovery conferred by adenosine. This recovery of contractile function was associated with greater tissue CK activity (adenosine, 415 +/- 40 units/gm; H/R control, 78 +/- 13 units/gm, p < 0.05). The protective effects of adenosine against H/R were present in the human ventricle and with recovery of DF in adenosine (66% +/- 5%) and H/R control (24% +/- 4%), p < 0.05.
Conclusions: Adenosine, a clinically accessible agonist, induces protection against H/R injury through a PKC-mediated mechanism in the rat ventricle. Further, the protection conferred by adenosine against H/R extends to the human ventricle.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0039-6060(96)80308-4 | DOI Listing |
Orthop J Sports Med
January 2025
Bone & Joint Sports Medicine Institute, Naval Medical Center Portsmouth, Portsmouth, Virginia, USA.
Background: Quadriceps tendon ruptures occur infrequently in the general population. Biomechanical data suggest advantages with the use of suture anchor fixation for major tendon repair. Clinical studies of quadriceps tendon repair have been limited to small case series.
View Article and Find Full Text PDFInt J Cardiol
January 2025
Department of Intensive Care Unit, Hangzhou Hospital of Traditional Chinese Medicine (Dingqiao District), Guangxing Affiliated Hospital of Zhejiang Chinese Medical University, No.453 Tiyuchang Road, Hangzhou, Zhejiang 310013, China. Electronic address:
Background: Myocardial ischemia/reperfusion (I/R) injury is a common pathophysiological change after myocardial reperfusion therapy. Recent research confirmed that long non-coding RNA (IncRNAs) played an important role in many cardiovascular diseases. This study was carried out to explore the role of lncRNA XR008038 in the I/R progression.
View Article and Find Full Text PDFCardiovasc Drugs Ther
January 2025
State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, First Affiliated Hospital of Xinjiang Medical University, Clinical Medical Research Institute, Xinjiang Medical University, No. 137 Liyushan South Road, Urumqi, 830054, China.
Purpose: To investigate the protective effect and mechanism of enhanced expression of endogenous macrophage migration inhibitory factor (MIF) on cardiac ischemia-reperfusion (I/R) injury.
Methods: A recombinant double-stranded adeno-associated virus serotype 9 with MIF or green fluorescent protein (GFP) genes (dsAAV9-MIF/GFP) was transduced into mice and neonatal rat ventricular myocytes (NRVMs). The models of cardiac 60 min ischemia and 24 h reperfusion and 12 h hypoxia/12 h reoxygenation (H/R) were established in mice and NRVMs, respectively.
Cardiovasc Drugs Ther
January 2025
Department of Anesthesiology, Hainan Hosiptal of Chinese PLA General Hospital, No.80 Jianglin Street, Haitang District, Sanya City, Hainan Province, China.
Purpose: Myocardial ischemia/reperfusion injury (MIRI) is closely associated with ferroptosis. Dexmedetomidine (Dex) has good therapeutic effects on MIRI. This study investigates whether dexmedetomidine (Dex) regulates ferroptosis during MIRI by affecting ferroportin1 (FPN) levels and elucidates the underlying mechanisms.
View Article and Find Full Text PDFSci Rep
January 2025
Geriatric Center, Affiliated Hospital of Inner Mongolia Medical University, No.1 Tongdao North Street, Huimin District, Hohhot, 010050, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!