Chronic exposure to stress levels of corticosteroids alters many aspects of hippocampal function and may lead to neurodegeneration. Male rats were treated for 10 days with corticosterone (CORT) or vehicle pellets, and mRNA levels for six gamma-aminobutyric acid (GABAA) receptor subunits were measured. Effects of castration on subunit mRNA levels in CORT- and vehicle-treated animals were also examined. In situ hybridization studies demonstrated that mRNA levels for hippocampal GABAA receptor alpha 1, alpha 2, beta 1, beta 2, beta 3, and gamma 2 subunits were differentially altered by CORT treatment. Levels of alpha 1 and alpha 2 mRNA decreased in the dentate gyrus, and beta 1 mRNA levels decreased in CA1 and dentate gyrus of CORT-, compared to vehicle-treated, animals. In contrast, beta 2 subunit levels increased in all hippocampal regions examined, beta 3 levels increased in the dentate gyrus, and gamma 2 levels increased in CA1-CA3. The alpha 1, beta 1, and beta 2 mRNA levels all increased in the cingulate cortex of CORT-treated animals. There was no significant effect of gonadal state on any of the subunits examined, but there was a significant negative correlation between testosterone levels and mRNA levels of alpha 1, alpha 2 and beta 3 in specific regions. These data demonstrate that chronic exposure to stress levels of CORT produces complex changes in the mRNA levels of multiple GABAA receptor subunits, independently of the CORT-induced suppression of circulating testosterone.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0169-328x(95)00118-c | DOI Listing |
Reprod Biol Endocrinol
January 2025
Department of Molecular and Developmental Medicine, Siena University, Siena, 53100, Italy.
Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).
View Article and Find Full Text PDFJ Transl Med
January 2025
Medical School of Nanjing University, Nanjing, 210093, China.
Background: Clear cell renal cell carcinoma (ccRCC) has a high incidence rate and poor prognosis, and currently lacks effective therapies. Recently, peptide-based drugs have shown promise in cancer treatment. In this research, a new endogenous peptide called CBDP1 was discovered in ccRCC and its potential anti-cancer properties were examined.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
There are limited studies on the improvement of leaky gut with minor inflammation associated with various diseases. To explore the therapeutic potential of Lactiplantibacillus plantarum 22 A-3, a member of the Lactobacillus species, in addressing a leaky gut. Lactiplantibacillus plantarum 22 A-3 was administered to a leaky gut mice model with low dextran sulfate sodium concentrations.
View Article and Find Full Text PDFAutoimmunity
December 2025
Department of Thyroid Head and Neck Surgery, The Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou, China.
Background: Exosomes derived from cancer-associated fibroblasts (CAFs) can affect tumor microenvironment (TME) of thyroid cancer (TC). The cAMP response element binding protein 1 (CREB1) acts as a transcription factor to participate in cancer development. Currently, we aimed to explore the molecular mechanism of exosome-associated CREB1 and C-C motif chemokine ligand 20 (CCL20) in TC.
View Article and Find Full Text PDFSci Rep
January 2025
The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe Road, Zhengzhou, 450052, Henan, China.
Netrin-1 (NTN1) is a laminin-related secreted protein involved in axon guidance and cell migration. Previous research has established a significant connection between NTN1 and nervous system development. In recent years, mounting evidence indicates that NTN1 also plays a crucial role in tumorigenesis and tumor progression.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!