Schwann cell tumors express characteristic patterns of CD44 splice variants.

J Neurooncol

Institut für Genetik, Kernforschungszentrum Karlsruhe, Germany.

Published: December 1995

Members of the CD44 family of cell surface hyaluronate-binding proteins have been implicated in cell migration, cell-matrix interactions and tumor progression. To determine whether these proteins might play a role in the normal functions of Schwann cells and in their tumorigenesis, we examined the patterns of CD44 expression in Schwann cells from rat peripheral nerve, rat Schwann cell tumor lines, and human schwannomas. Normal rat spinal nerves and primary Schwann cell cultures expressed standard CD44 (CD44s) but not alternatively spliced variant isoforms. In contrast, rat Schwann cell tumor lines expressed both CD44s and a number of variants, including proteins containing sequences encoded by exon v6. Furthermore, we found that these cell lines bind hyaluronate, and that their cell surface hyaluronate binding correlates with CD44 expression. All of the human schwannomas also expressed CD44 variants, especially epitopes encoded by exon v5, the border between v7 and v8, and v9-10. These data indicate that Schwann cells normally express CD44s, that Schwann cell tumors express both CD44s and particular variants of CD44, and that CD44s and possibly variants of CD44 are involved in hyaluronate recognition by Schwann cell tumors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF01052620DOI Listing

Publication Analysis

Top Keywords

schwann cell
24
cell tumors
12
schwann cells
12
schwann
9
cell
9
tumors express
8
cd44
8
patterns cd44
8
cell surface
8
cd44 expression
8

Similar Publications

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.

Background: Recent studies suggest genome-wide-association-studies (GWAS) loci confer their effects on microglia in late-onset Alzheimer's disease (LOAD) brains. Relatively fewer studies have investigated the effects of other genome-wide significant loci (p<5e) using human neurons.

Method: GWAS itself cannot directly identify causal variant-(effector)gene-pairs as GWAS only reports the sentinel variant at a given locus.

View Article and Find Full Text PDF

Renewal of the catecholamine-secreting chromaffin cell population of the adrenal medulla is necessary for physiological homeostasis throughout life. Definitive evidence for the presence or absence of an adrenomedullary stem cell has been enigmatic. In this work, we demonstrate that a subset of sustentacular cells endowed with a support role, are in fact adrenomedullary stem cells.

View Article and Find Full Text PDF

Spinal cord injury (SCI) leads to permanent motor and sensory loss that is exacerbated by intraspinal inflammation and persists months to years after injury. After SCI, monocyte-derived macrophages (MDMs) infiltrate the lesion to aid in myelin-rich debris clearance. During debris clearance, MDMs adopt a proinflammatory phenotype that exacerbates neurodegeneration and hinders recovery.

View Article and Find Full Text PDF

Background: The peripheral nervous system (PNS) exhibits remarkable regenerative capability after injury. PNS regeneration relies on neurons themselves as well as a variety of other cell types, including Schwann cells, immune cells, and non-neuronal cells.

Objectives: This paper focuses on summarizing the critical roles of immune cells (SCs) in the injury and repair processes of the PNS.

View Article and Find Full Text PDF

Orchestrating the frontline: HDAC3-miKO recruits macrophage reinforcements for accelerated myelin debris clearance after stroke.

Theranostics

January 2025

State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, and Institutes of Brain Science, Fudan University, Shanghai, China.

White matter has emerged as a key therapeutic target in ischemic stroke due to its role in sensorimotor and cognitive outcomes. Our recent findings have preliminarily revealed a potential link between microglial HDAC3 and white matter injury following stroke. However, the mechanisms by which microglial HDAC3 mediates these effects remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!