Delayed reproductive death, the appearance of colonies with a reduced cell density (impaired colonies) and the number of giant cells per colony were investigated in murine fibrosarcoma cells after irradiation with 3 to 9 Gy of x-rays. Radiation survivors were replated after reaching confluence, which occurred after 13 to 15 doublings; this procedure was repeated three times. The replating efficiency decreased in a dose-dependent manner, the survivors of 9 Gy achieving only 30% of the plating efficiency of unirradiated cells. After the third replating, i.e. after 40 to 45 doublings, the plating efficiency of the survivors approached that of the controls. The median colony size of the survivors showed a similar dose-dependent decrease, which was pronounced after the first replating but still remained significant after the third replating. The fraction of impaired colonies was increased to more than 30% in 9-Gy survivors, and though abating, the increase was still significant even after the third replating. Evidence of residual damage was also provided by the presence of giant cells. For instance, after 6 Gy irradiation and 13 to 15 doublings, the proportion of colonies with giant cells was 60%, decreasing only to 45% after 40 to 45 doublings. The number of giant cells per colony was 1.4 in colonies arising immediately after 6 Gy, decreasing to 0.9 after the third replating. These results suggest that the proliferative capacity of surviving cells is depressed even longer than their clonogenic capacity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF01209748 | DOI Listing |
ACS Appl Bio Mater
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678623, India.
The emerging prevalence of antimicrobial resistance demands cutting-edge therapeutic agents to treat bacterial infections. We present a synthetic strategy to construct sequence-defined oligomers (SDOs) by using dithiocarbamate (DTC). The antibacterial activity of the synthesized library of SDOs was studied using a Gram-positive and a Gram-negative .
View Article and Find Full Text PDFRev Med Suisse
January 2025
Service de rhumatologie, HFR Fribourg, 1708 Fribourg.
In 2024, CD19-CAR T cells are ubiquitous in rheumatology, with incredible therapeutic results in cases of severe and refractory disease. This major advance confirms the interest of the B lymphocyte as a therapeutic target, and also suggests the real possibility of a drug-free remission, at the price of minor and minimal side effects for the time being. However, the necessary perspective is still lacking for a therapy that remains out of reach because of its price.
View Article and Find Full Text PDFNat Mater
January 2025
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
Cells use 'active' energy-consuming motor and filament protein networks to control micrometre-scale transport and fluid flows. Biological active materials could be used in dynamically programmable devices that achieve spatial and temporal resolution that exceeds current microfluidic technologies. However, reconstituted motor-microtubule systems generate chaotic flows and cannot be directly harnessed for engineering applications.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
SARS-CoV-2 is a viral infection, best studied in the context of epithelial cell infection. Epithelial cells, when infected with SARS-CoV-2 express the viral S-protein, which causes host cells to fuse together into large multi-nucleated cells known as syncytia. Because SARS-CoV-2 infections also frequently present with cardiovascular phenotypes, we sought to understand if S-protein expression would also result in syncytia formation in endothelial cells.
View Article and Find Full Text PDFOpen Biol
January 2025
Laboratory of Integrative Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czechia.
Epithelia are multicellular sheets that form barriers defining the internal and external environments. The constant stresses acting at this interface require that epithelial sheets are mechanically robust and provide a selective barrier to the hostile exterior. These properties are mediated by cellular junctions which are physically linked with heavily crosslinked cytoskeletal networks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!