As observed for neurons in situ, phosphorylated neurofilament (NF) epitopes are normally segregated within the axonal cytoskeleton of NB2a/d1 cells. However, accumulations of phosphorylated NFs develop in NB2a/d1 perikarya following exposure to aluminum salts and following inhibition of proteolysis. In the present study, we observed that perikarya of cells exposed to both aluminum and the protease inhibitor C1 (also known as "AllNal") were more intensely labeled by monoclonal antibodies directed against both nonphosphorylated and phosphorylated epitopes than were cells treated with either aluminum or protease inhibitor alone. Since these monoclonal antibodies crossreact with tau, we also immunostained cells treated under these conditions with monoclonal antibodies directed against phosphate-insensitive (5E2) and phosphorylated (PHF-1) epitopes of tau. Aluminum treatment, but not C1 treatment, induced accumulation of total tau isoforms as judged by an increase in 5E2 immunoreactivity. Neither treatment, either separately or in combination, induced an increase in PHF-1 immunoreactivity. These findings suggest that alterations in immunoreactivity with SMI antibodies reflected increases in NF epitopes. This was confirmed by immunoblot analyses. Since proteolysis is apparently instrumental in maintaining the normal distribution patterns of phosphorylated NF epitopes, these findings implicate deficiencies in proteolytic mechanisms in the development of neurofibrillary pathology, and underscore the possibility of a multiple etiology in human neuropathological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF02815138DOI Listing

Publication Analysis

Top Keywords

monoclonal antibodies
12
inhibition proteolysis
8
aluminum protease
8
protease inhibitor
8
antibodies directed
8
phosphorylated epitopes
8
cells treated
8
phosphorylated
5
epitopes
5
proteolysis enhances
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!