Synechocystis PCC6803 displays two inorganic carbon-uptake processes, a low-affinity one (apparent Km: 300-400 microM) functional in cells grown under standard or limiting inorganic carbon concentrations, and one with a higher affinity (60 +/- 12 microM), detected only in cells adapted to limiting inorganic carbon conditions. A mutational and screening procedure allowed the isolation of a mutant deficient in the high-affinity system, but only slightly impaired in its growth capacities. The mutated genomic region revealed two open reading frames (ORFs), possibly belonging to an operonic structure. A clone in which the downstream ORF, hatR (high-affinity transport), had been inactivated showed a phenotype close to that of the original mutant. Inactivation of the other ORF, hatA, yielded a clone unable to grow in limiting inorganic carbon conditions. The deduced HatA protein showed no homology with any registered protein. It possessed three hydrophobic domains, including a putative signal peptide. Several hypotheses are considered as to its role. The deduced HatR protein, which possessed the features characteristic of the response regulators of the two-component regulatory systems ubiquitous in bacteria, might be a regulator controlling the activity of the high-affinity transport process. It would belong to the subclass of these molecules lacking the DNA-binding domain.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2958.1995.mmi_18030559.xDOI Listing

Publication Analysis

Top Keywords

inorganic carbon
16
limiting inorganic
12
synechocystis pcc6803
8
carbon conditions
8
high-affinity transport
8
protein possessed
8
uptake inorganic
4
carbon
4
carbon cyanobacterium
4
cyanobacterium synechocystis
4

Similar Publications

Mercury sequestration in alkaline salt low-level radioactive waste.

Environ Sci Pollut Res Int

January 2025

Savannah River National Laboratory, Aiken, SC, USA.

Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.

View Article and Find Full Text PDF

As freshwater lakes undergo rapid anthropogenic change, long-term studies reveal key microbial dynamics, evolutionary shifts and biogeochemical interactions, yet the vital role of viruses remains overlooked. Here, leveraging a 20 year time series from Lake Mendota, WI, USA, we characterized 1.3 million viral genomes across time, seasonality and environmental factors.

View Article and Find Full Text PDF

Multiscale X-ray scattering elucidates activation and deactivation of oxide-derived copper electrocatalysts for CO reduction.

Nat Commun

January 2025

Inorganic Chemistry and Catalysis, Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands.

Electrochemical reduction of carbon dioxide (CO) into sustainable fuels and base chemicals requires precise control over and understanding of activity, selectivity and stability descriptors of the electrocatalyst under operation. Identification of the active phase under working conditions, but also deactivation factors after prolonged operation, are of the utmost importance to further improve electrocatalysts for electrochemical CO conversion. Here, we present a multiscale in situ investigation of activation and deactivation pathways of oxide-derived copper electrocatalysts under CO reduction conditions.

View Article and Find Full Text PDF

Covalent semiconductors of the carbon nitride family are among the most promising systems to realize "artificial photosynthesis", that is exploiting synthetic materials which use sunlight as an energy source to split water into its elements or converting CO into added value chemicals. However, the role of surface interactions and electronic properties on the reaction mechanism remain still elusive. Here, we use in-situ spectroscopic techniques that enable monitoring surface interactions in carbon nitride under artificial photosynthetic conditions.

View Article and Find Full Text PDF

Drinking water flavor, a critical water quality metric, exhibits substantial regional variations across China, influenced by local geology and chemistry. Despite growing consumer concerns about water flavor, a spatial assessment of the determinants of water flavor in China has been notably lacking. This study bridges this gap by conducting a spatially comprehensive analysis of 78 tap water samples throughout China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!