We have explored the use of measurements of electrical impedance to discriminate between the effects of different irritant substances upon the skin, and have studied the relationships between impedance and histopathological change. Three compounds with different chemical profiles were tested on volunteers: sodium lauryl sulphate, benzalkonium chloride and nonanoic acid. The concentrations selected were such that each irritant produced responses of a similar order, as judged by visual scores. The magnitude and phase of electrical impedance were measured and, for comparison, also the transepidermal water loss. Four physically distinct aspects (indices) were devised from the impedance data, and the values obtained were statistically analysed. The three irritants produced different effects, giving distinctive impedance patterns. These were also found to be reflected by three different types of histopathological skin response. Our results suggest that the indices can be used to classify irritant contact reactions, which it is difficult or impossible to achieve by other non-invasive techniques.
Download full-text PDF |
Source |
---|
Orv Hetil
January 2025
1 Semmelweis Egyetem, Általános Orvostudományi Kar, Belgyógyászati és Onkológiai Klinika Budapest, Korányi S. u. 2/A, 1083 Magyarország.
J Neuroeng Rehabil
January 2025
Department of BioMechanical Engineering, Delft University of Technology, Mekelweg 2, Delft, 2628 CD, South-Holland, The Netherlands.
Duchenne Muscular Dystrophy (DMD) progressively leads to loss of limb function due to muscle weakness. The incurable nature of the disease shifts the focus to improving quality of life, including assistive supports to improve arm function. Over time, the passive joint impedance (Jimp) of people with DMD increases.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Institute of Science and Technology Innovation Co., Ltd., South China Normal University, Qingyuan, 511517, China. Electronic address:
Zero-valent iron (ZVI) has been confirmed in enhancing methane production by improving interspecies electron transfer during anaerobic digestion (AD) of waste activated sludge (WAS). In this study, we suppose that sulfidated zero-valent iron (S-ZVI), a semiconductor material, has better property of electron transfer in AD process. Based on two-phase anaerobic digestion process, nitrite and S-ZVI were used separately for improving acidogenic phase and methanogenic phase of anaerobic sludge digestion.
View Article and Find Full Text PDFBioelectrochemistry
January 2025
Graduate School of Engineering, Chiba University, 1-33 Yayoi, Inage, Chiba 263-8522 Japan.
Heparin concentration c in a blood extracorporeal circulation has been real-timely predicted based on the relaxation strength Δε at relaxation frequency f extracted by relaxation time distribution (RTD). The simulated extracorporeal circulation was conducted to optimize the number of Δε for the prediction of c using the porcine whole blood (WB) and low-leukocyte and -platelet blood (LLPB) under the condition of the gradual increment of c from 0 to 8 U/mL with constant flow rate and blood temperature. The experimental results show that among the three relaxation strengths Δε, Δε and Δε (in ascending order of frequency), Δε at f = 5.
View Article and Find Full Text PDFNutrients
January 2025
National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Xicheng District, Beijing 100050, China.
Purpose: The aims of this study were to explore the differences in total body water and hydration status among Chinese children aged 6-17 years.
Methods: A cross-sectional study was implemented among children aged 6-17 years in China. The total body water (TBW), intracellular water (ICW), and extracellular water (ECW) were determined by bioelectrical impedance analysis (BIA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!