Magnetic resonance imaging contrast agents that are sensitive to pressure would be useful for evaluating cardiovascular function. One such potential contrast agent consists of gas-filled liposome microbubbles. The magnetic susceptibility of the microbubbles locally perturb the static magnetic field, which influences the transverse-relaxation properties of the surrounding medium. Changes in the pressure alter the bubble dimensions, which affects the magnetic field perturbations and, hence, the transverse-relaxation. The effect of these microbubbles on the T2 relaxation times of a water-based medium was measured for liposomes filled with different gases-nitrogen, argon, air, oxygen, xenon, neon, perfluoropentane, perfluorobutane, and sulfur hexafluoride. The air-filled, perfluoropentane-filled and the oxygen-filled liposomes demonstrated the largest effect on transverse-relaxation. The influence of pressure on both gradient-echo and spin-echo signal intensities for air-filled microbubbles was also evaluated. Pressure-induced changes in signal intensity were consistently observed for both the spin-echo and gradient-echo pulses sequences.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.1910350603DOI Listing

Publication Analysis

Top Keywords

contrast agents
8
magnetic field
8
microbubbles
5
microbubbles novel
4
novel pressure-sensitive
4
pressure-sensitive contrast
4
magnetic
4
agents magnetic
4
magnetic resonance
4
resonance imaging
4

Similar Publications

Inhibition of the target of rapamycin (TOR/mTOR) protein kinase by the drug rapamycin extends lifespan and health span across diverse species. However, rapamycin has potential off-target and side effects that warrant the discovery of additional TOR inhibitors. TOR was initially discovered in Saccharomyces cerevisiae (yeast) which contains two TOR paralogs, TOR1 and TOR2.

View Article and Find Full Text PDF

Society for Cardiovascular Magnetic Resonance recommendations toward environmentally sustainable cardiovascular magnetic resonance.

J Cardiovasc Magn Reson

January 2025

Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, USA. Electronic address:

Delivery of health care, including medical imaging, generates substantial global greenhouse gas emissions. The cardiovascular magnetic resonance (CMR) community has an opportunity to decrease our carbon footprint, mitigate the effects of the climate crisis, and develop resiliency to current and future impacts of climate change. The goal of this document is to review and recommend actions and strategies to allow for CMR operation with improved sustainability, including efficient CMR protocols and CMR imaging workflow strategies for reducing greenhouse gas emissions, energy, and waste, and to decrease reliance on finite resources, including helium and waterbody contamination by gadolinium-based contrast agents.

View Article and Find Full Text PDF

Significant Radiation Reduction Using Cloud-Based AI Imaging in Manually Matched Cohort of Complex Aneurysm Repair.

Ann Vasc Surg

January 2025

Division of Vascular & Endovascular Surgery, Weill Cornell Medicine, New York, NY. Electronic address:

Objective: Cloud-based, surgical augmented intelligence (Cydar Medical, Cambridge, UK) can be used for surgical planning and intraoperative imaging guidance during complex endovascular aortic procedures. We aim to evaluate radiation exposure, operative safety metrics, and post-operative renal outcomes following implementation of Cydar imaging guidance using a manually matched cohort of aortic procedures.

Methods: We retrospectively reviewed our prospectively maintained database of endovascular aortic cases.

View Article and Find Full Text PDF

Background: Indications for carotid endarterectomy (CEA) and reduction of complications require evaluation of the plaque properties and location of the distal end of the plaque. High cervical location can be predicted from the anatomy of the vertebral body and mandibular bones, and the locations of the posterior belly of the digastric muscle and stylohyoid muscle. Magnetic resonance (MR) imaging without contrast medium is useful for preoperative evaluation of the plaque, arteries, and bone characterization.

View Article and Find Full Text PDF

Hypointense Findings on Hepatobiliary Phase MR Images.

Radiographics

February 2025

From the Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st Street SW, Rochester, MN 55905 (K.C.H., M.L.W., C.L.W., J.F., S.K.V.); Department of Medical Imaging, University of Ottawa, Ottawa, Ontario, Canada (K.C.H.); Department of Medical Imaging, Beaujon University Hospital, Clichy, France (M.R.); HT Medica, Madrid, Spain (A.L.); Department of Radiology, University of Vienna, Vienna, Austria (A.B.S.); Department of Radiology, Sun Yat Sen University, Guangzhou, China (J.W.); and Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, Ariz (A.C.S.).

Hepatobiliary (HB) contrast agents are increasingly valuable diagnostic tools in MRI, offering a wider range of applications as their clinical use expands. Normal hepatocytes take up HB contrast agents, which are subsequently excreted in bile. This property creates a distinct HB phase providing valuable insights into liver function and biliary anatomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!