The elucidation of the chemical structure of lpriflavone was carried out by ultraviolet absorption spectrophotometric, infrared spectroscopic, 1H and 13C nuclear magnetic resonance spectroscopic, low and high resolution EI mass spectrometric, thermoanalytical, elemental analytical and X-ray diffraction methods. The results unambigously verify the structure of Ipriflavone.
Download full-text PDF |
Source |
---|
Biomater Adv
January 2025
Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid 28040, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, ISCIII, Madrid 28040, Spain. Electronic address:
This study reports on the metabolic changes accompanying the differentiation of MC3T3-E1 osteoprogenitor cells induced by mesoporous bioactive glass nanospheres (nMBG) loaded with ipriflavone (nMBG-IP). Ipriflavone (IP) is a synthetic isoflavone known for inhibiting bone resorption, maintaining bone density, and preventing osteoporosis. Delivering IP intracellularly is a promising strategy to modulate bone remodeling at significantly lower doses compared to free drug administration.
View Article and Find Full Text PDFJ Clin Periodontol
August 2022
Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, PR China.
Aim: Emerging studies have shown that immune response to biomaterial implants plays a central role in bone healing. Ipriflavone is clinically used for osteoporosis. However, the mechanism of ipriflavone in immune response to implants in early stages of osseointegration remains unclear.
View Article and Find Full Text PDFNanomaterials (Basel)
April 2021
Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain.
Angiogenic biomaterials are designed to promote vascularization and tissue regeneration. Nanoparticles of bioactive materials loaded with drugs represent an interesting strategy to stimulate osteogenesis and angiogenesis and to inhibit bone resorption. In this work, porcine endothelial progenitor cells (EPCs), essential for blood vessel formation, were isolated and characterized to evaluate the in vitro effects of unloaded (NanoMBGs) and ipriflavone-loaded nanospheres (NanoMBG-IPs), which were designed to prevent osteoporosis.
View Article and Find Full Text PDFFEMS Yeast Res
May 2020
Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Agatis Street, IPB Dramaga Campus, Bogor 16680, Indonesia.
Investigations into the potential for pharmacological inhibition of the aging process and the onset of age-related disease are increasingly garnering attention. Here, we analyzed the antiaging properties of natural compounds derived from several marine bacteria in vitro and in vivo using the fission yeast Schizosaccharomyces pombe. The Pseudoalteromonas flavipulchra STILL-33 extract exhibited high antioxidant and antiglycation activities in vitro.
View Article and Find Full Text PDFEur J Pharm Biopharm
December 2018
Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain. Electronic address:
Mesoporous nanospheres in the system SiO-CaO (NanoMBGs) with a hollow core surrounded by a radial arrangement of mesopores were characterized, labeled with FITC (FITC-NanoMBGs) and loaded with ipriflavone (NanoMBG-IPs) in order to evaluate their incorporation and their effects on both osteoblasts and osteoclasts simultaneously and maintaining the communication with each other in coculture. The influence of these nanospheres on macrophage polarization towards pro-inflammatory M1 or reparative M2 phenotypes was also evaluated in basal and stimulated conditions through the expression of CD80 (as M1 marker) and CD206 (as M2 marker) by flow cytometry and confocal microscopy. NanoMBGs did not induce the macrophage polarization towards the M1 pro-inflammatory phenotype, favoring the M2 reparative phenotype and increasing the macrophage response capability against stimuli as LPS and IL-4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!