Controlled cortical impact (CCI) is a contemporary model of experimental cerebral contusion. We examined the cerebrovascular and neuropathologic effects of a severe CCI in rats. The utility of magnetic resonance imaging (MRI) for the assessment of contusion volume after severe CCI was also established. Severe CCI (3.0 mm depth, 4 m/sec velocity) to the left (L) parietal cortex was produced in anesthetized (isoflurane/N2O/O2), intubated, and mechanically ventilated male Sprague-Dawley rats (n = 58). Physiologic parameters were controlled. The time course of alterations in edema [L-R% brain water (% BW) in 3-mm coronal sections through injured and contralateral hemispheres, wet-dry weight] was evaluated at 2 h, 24 h, 48 h, and 7 days posttrauma. Local cerebral blood flow (ICBF, measured in 8 structures in each hemisphere by autoradiography) was evaluated at 2 h, 24 h, and 7 days. Contusion volume (measured by histology and image analysis) was assessed at 14 days and measured in 6 rats by both MRI and histology. The survival rate after severe CCI was 96.2%. The L-R difference in % BW increased to 1.69 +/- 0.18% at 2 h, 3.00 +/- 0.08% at 24 h, 2.69 +/- 0.09% at 48 h, and 0.94 +/- 0.21% at 7 days. These values all differed from the control (p < 0.05). The % BW was greater at 24 h and 48 h than at 2 h and 7 days (p < 0.05). Marked reductions in ICBF were limited to structures in the injured hemisphere and were observed in the parietal cortex (2 and 24 h), subcortical white matter (2 and 24 h), and hippocampus (2 h), (p < 0.05) vs control rats. In the contusion core, ICBF was 19.4 +/- 8.8 mL 100 g-1 min-1 at 24 h (p = 0.011 vs normal). Necrosis was seen in large portions of the parietal cortex and subcortical white matter, and portions of the hippocampus and thalamus. Contusion volume was 47.8 +/- 9.2 mm3, which represented 14.4 +/- 2.1% of the traumatized hemisphere. Estimates of contusion volume by MRI and histology were closely correlated (r = 0.941, p < 0.017). Severe CCI in rats is accompanied by contusion, reproducible edema, and marked hypoperfusion, involving over 14% of the injured hemisphere, and can be produced with minimal mortality. T2-weighted MRI successfully and noninvasively identifies contusion volume in this model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/neu.1995.12.1015 | DOI Listing |
J Neurotrauma
December 2024
Department of Biological Sciences, College of Science, National Sun Yat-sen University, Kaohsiung, Taiwan.
Cervical spinal cord injury usually leads to cardiorespiratory dysfunction due to interruptions of the supraspinal pathways innervating the phrenic motoneurons and thoracic sympathetic preganglionic neurons. Although clinical guidelines recommend maintaining the mean arterial pressure within 85-90 mmHg during the first week of injury, there is no pre-clinical evidence from animal models to prove the therapeutic efficacy of hemodynamic management. Accordingly, the present study was designed to investigate the therapeutic efficacy of hemodynamic management in rats with cervical spinal cord contusion.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Forensic Medicine, School of Medicine, Tokyo Women's Medical University, Tokyo, Japan.
Introduction: Traumatic brain injury (TBI) is exacerbated in patients on antithrombotic medications, with warfarin leading to increased bleeding in some cases. However, the extent to which this bleeding increases lethality and its long-term effects remain unclear. This study aimed to investigate the exacerbation of TBI by warfarin treatment and comprehensively evaluate the impact of TBI on the anticoagulant effects of warfarin.
View Article and Find Full Text PDFNeuroradiol J
November 2024
Radiology Informatics Lab, Department of Radiology, Mayo Clinic, Rochester, MN, USA.
Introduction: Traumatic brain injury (TBI) is a leading cause of disability and mortality worldwide, with epidural hematoma (EDH) being a severe consequence. This study focuses on identifying factors predicting EDH volume changes in TBI patients and developing a machine learning (ML) model to predict EDH expansion.
Methods: The study includes patients with traumatic EDH between 2019 and 2021.
Insights Imaging
November 2024
Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
Objectives: Chest computed tomography (CT) can diagnose and assess the severity of pulmonary contusions. However, in cases of severe lung contusion, the total lung volume ratio may not accurately predict severity. This study investigated the association between life-threatening hemoptysis and chest CT imaging data on arrival at the emergency department in patients with pulmonary contusions or lacerations due to blunt chest injury.
View Article and Find Full Text PDFInt Med Case Rep J
November 2024
Faculty of Medicine, Somali National University, Mogadishu, Somalia.
Traumatic posterior fossa extradural hematoma (PFEDH) is a rare but potentially life-threatening condition. It is characterized by the accumulation of blood between the dura mater and occipital bone, leading to compression of the brainstem. We report the case of a 25-year-old male who presented to the emergency department following a fall, exhibiting confusion and a Glasgow Coma Scale (GCS) score of 14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!