Conformational comparison in the snake toxin family.

Int J Pept Protein Res

Institute of Biological Chemistry and Physicochemistry (UBA-CONICET), Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina.

Published: March 1996

A theoretical method was applied to consensus sequences of several members of the snake toxin family as a further approach to examining their conformational homology. Some secondary-structure predictions as well as hydropathy profiles were also examined. A comparison of long neurotoxins themselves reveals a high homology degree. However, their C-terminal fragments show poor homology and the N-terminal fragments appear as the region of maximum variability. Moreover, when the matrix includes the consensus sequence of the genus Laticauda (LNTX1), lacking the disulfide bridge 31-35, the method detects a lower conformational homology in a molecular region centered at position 31. Unlike long neurotoxins, the N-terminal segments of short neurotoxins show a high homology degree, but when comparing short with long neurotoxins, a poor correlation is found in this zone of the molecule. Cytotoxins studied exhibit an excellent conformational homology except when the consensus sequence of cytotoxin homologues CTXE is one of the proteins in the matrix. A comparison between cytotoxins and short neurotoxins reveals homology only in two segments belonging to a beta-sheet structure. A considerable degree of homology is found between the short neurotoxin group and calciseptin and fasciculin as well as between the long neurotoxin group and kappa-neurotoxins.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-3011.1996.tb01341.xDOI Listing

Publication Analysis

Top Keywords

conformational homology
12
long neurotoxins
12
snake toxin
8
toxin family
8
homology
8
neurotoxins reveals
8
high homology
8
homology degree
8
consensus sequence
8
short neurotoxins
8

Similar Publications

Characterization of the host specificity of the SH3 cell wall binding domain of the staphylococcal phage 88 endolysin.

Arch Microbiol

January 2025

Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.

Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).

View Article and Find Full Text PDF

Metacaspases-Like Proteases of Trichomonas vaginalis: In Silico Identification and Characterization.

J Basic Microbiol

January 2025

Laboratorio de Bioquímica y Genética Molecular, Facultad de Química, Universidad Autónoma de Yucatán, Mérida, Yucatán, México.

Metacaspases (MCA), are cysteine-dependent proteases closely related to caspases. In protozoa, MCA plays an important role in programmed cell death (PCD). In Trichomonas vaginalis, a kind of PCD that resembles apoptosis has been described, but the activators of this mechanism have not been demonstrated.

View Article and Find Full Text PDF

The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is a multidomain protein consisting of two protein-protein interaction domains, the Src homology 2 (SH2) domain, and the proline-rich region (PRR), as well as three phosphoinositide-binding domains, the pleckstrin homology-like (PHL) domain, the 5-phosphatase (5PPase) domain, and the C2 domain. SHIP1 is commonly known for its involvement in the regulation of the PI3K/AKT signaling pathway by dephosphorylation of phosphatidylinositol-3,4,5-trisphosphate (PtdIns(3,4,5)P) at the D5 position of the inositol ring. However, the functional role of each domain of SHIP1 for the regulation of its enzymatic activity is not well understood.

View Article and Find Full Text PDF

Nitrite reductases play a crucial role in the nitrogen cycle, demonstrating significant potential for applications in the food industry and environmental remediation, particularly for nitrite degradation and detection. In this study, we identified a novel nitrite reductase (NiR) from a newly isolated denitrifying bacterium, YD01. We constructed a heterologous expression system using BL21/pET28a-Nir, which exhibited remarkable nitrite reductase enzyme activity of 29 U/mL in the culture broth, substantially higher than that reported for other strains.

View Article and Find Full Text PDF

Predicting the relative solvent accessibility (RSA) of a protein is critical to understanding its 3D structure and biological function. RSA prediction, especially when homology transfer cannot provide information about a protein's structure, is a significant step toward addressing the protein structure prediction challenge. Today, deep learning is arguably the most powerful method for predicting RSA and other structural features of proteins.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!