We present a method to perform simultaneous microdialysis with light reflectance imaging of neural activity in a discrete brain region of the freely behaving animal. We applied this method to the dorsal hippocampus of freely behaving cats to (1) measure extracellular glutamate and reflectance variations across a sleep-waking cycle, (2) assess spatially coherent neural activity changes accompanying local perfusion of cocaine and (3) measure local changes in cell volume induced by infusion of hyper- and hypo-osmotic solutions. Higher extracellular glutamate concentrations corresponded to higher imaged neural activity. Sequential images showed that cocaine perfusion elicited a propagating reflectance change as cocaine reached the tissue. Microperfusion of hypo-osmotic solution ( - 100 mOsm), which increases cell volume, decreased reflectance. Microperfusion of hyperosmotic sucrose solutions, which reduce cell volume, increased reflectance in a dose-dependent manner. The data indicate that reflectance imaging can measure changes in cell volume, and could, thus, measure neural activity through activity/cell volume corollaries. Combining microdialysis and optical imaging enables investigation of the neurochemical bases of spontaneous neural activity patterns within discrete brain nuclei.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0165-0270(95)00156-5DOI Listing

Publication Analysis

Top Keywords

neural activity
20
cell volume
16
reflectance imaging
12
freely behaving
12
discrete brain
8
extracellular glutamate
8
changes cell
8
reflectance
6
neural
5
activity
5

Similar Publications

Determining the level of consciousness in patients with brain injury-and more fundamentally, establishing what they can experience-is ethically and clinically impactful. Patient behaviors may unreliably reflect their level of consciousness: a subset of unresponsive patients demonstrate covert consciousness by willfully modulating their brain activity to commands through fMRI or EEG. However, current paradigms for assessing covert consciousness remain fundamentally limited because they are insensitive, rely on imperfect assumptions of functional neuroanatomy, and do not reflect the spectrum of conscious experience.

View Article and Find Full Text PDF

The time course and organization of hippocampal replay.

Science

January 2025

Department of Neuroscience, University of California, Berkeley, Berkeley, CA, USA.

The mechanisms by which the brain replays neural activity sequences remain unknown. Recording from large ensembles of hippocampal place cells in freely behaving rats, we observed that replay content is strictly organized over multiple timescales and governed by self-avoidance. After movement cessation, replays avoided the animal's previous path for 3 seconds.

View Article and Find Full Text PDF

Social animals live in groups and interact volitionally in complex ways. However, little is known about neural responses under such natural conditions. Here, we investigated hippocampal CA1 neurons in a mixed-sex group of five to 10 freely behaving wild Egyptian fruit bats that lived continuously in a laboratory-based cave and formed a stable social network.

View Article and Find Full Text PDF
Article Synopsis
  • Synchronization in brain networks is crucial for processing information, but time delays in signal transmission can significantly influence this process, especially in more complex spiking neural networks.
  • The study involves investigating synchronization conditions and dynamics in a two-dimensional network of adaptive exponential integrate-and-fire neurons, focusing on how delay impacts this behavior.
  • Findings reveal that synchronization patterns depend on a combination of properties at different levels, including individual neuron characteristics, network connectivity, and long-range connections, which together affect the emergent activity patterns in the brain.
View Article and Find Full Text PDF

Differential Neuronal Activation of Nociceptive Pathways in Neuropathic Pain After Spinal Cord Injury.

Cell Mol Neurobiol

January 2025

Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.

Neuropathic pain, a prevalent complication following spinal cord injury (SCI), severely impairs the life quality of patients. No ideal treatment exists due to incomplete knowledge on underlying neural processes. To explore the SCI-induced effect on nociceptive circuits, the protein expression of c-Fos was analyzed as an indicator of neuronal activation in a rat contusion model exhibiting below-level pain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!