The anticonvulsant activity of the novel drug D-23129 (N-(2-amino-4-(4-fluorobenzylamino)phenyl)carbamic acid ethyl ester) was evaluated in animal models of epileptic seizures. D-23129 was active after oral and intraperitoneal administration in rats and mice in a range of anticonvulsant tests at nontoxic doses. The compound was active against electrically induced seizures (MES, ED50 rat p.o. = 2.87 mg/kg), against seizures induced chemically by pentylenetetrazole (s.c. PTZ, ED50 mouse p.o. = 13.5 mg/kg), picrotoxin and N-methyl-D-aspartate (NMDA) and in a genetic animal model, the DBA/2 mouse. It was not active against seizures induced by bicuculline and strychnine. Motor impairment, evaluated with the rotarod test and by observation in the open field, was minimal at doses showing anticonvulsant activity. D-23129 was very effective in elevating the threshold for electrically and chemically induced seizures. Considering the dose increasing the MES threshold by 50% (TID50 mouse i.p. = 1.6 mg/kg; TID50 rat i.p. = 0.72 mg/kg) and the TD50 obtained in the rotarod test, the protective index of D-23129 is better than that of valproate and phenytoin. During 14 days chronic oral treatment with 15 mg/kg, no development of tolerance was observed. D-23129 thus presents an orally active, safe, broad spectrum anticonvulsant agent, which is structurally unrelated to anticonvulsants currently used. We expect that D-23129 will improve the treatment of refractory seizures in humans.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0920-1211(95)00101-8DOI Listing

Publication Analysis

Top Keywords

broad spectrum
8
animal models
8
models epileptic
8
epileptic seizures
8
anticonvulsant activity
8
induced seizures
8
seizures induced
8
rotarod test
8
d-23129
7
seizures
7

Similar Publications

Role of glycosylation in bacterial resistance to carbapenems.

World J Microbiol Biotechnol

January 2025

School of Medicine, Faculty of Life Science & Medicine, Northwest University, Xi'an, China.

Carbapenems are a class of β-lactam antibacterial drugs with a broad antibacterial spectrum and strong activity, commonly used to treat serious bacterial infections. However, improper or excessive use of carbapenems can lead to increased bacterial resistance, which is a significant concern as they are often used as last resort for treating multidrug-resistant (MDR) gram-negative bacteria. Confronted with this challenge, it is crucial to comprehensively understand the mechanism of carbapenem resistance to develop effective therapeutic strategies and innovative drugs.

View Article and Find Full Text PDF

Introduction: Community-acquired pneumonia (CAP) and hospital-acquired pneumonia (HAP) are major global health challenges, with high morbidity and mortality rates. The increasing prevalence of multidrug-resistant (MDR) bacteria may diminish the effectiveness of standard empirical antibiotics, highlighting the need for broader-spectrum agents that target also MDR organisms.

Areas Covered: This review summarizes findings from a PubMed search on the use of ceftobiprole in CAP and HAP.

View Article and Find Full Text PDF

Lysosomes are digestive organelles that are crucial for nutrient sensing and metabolism. Lysosome impairment is linked to a broad spectrum of metabolic disorders, underscoring their importance to human health. Thus, lysosomes are an attractive target for metabolic disease therapies.

View Article and Find Full Text PDF

Using cortical organoids to understand the pathogenesis of malformations of cortical development.

Front Neurosci

January 2025

Department of Neurology, Rosamund Stone Zander Translational Neuroscience Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States.

Malformations of cortical development encompass a broad range of disorders associated with abnormalities in corticogenesis. Widespread abnormalities in neuronal formation or migration can lead to small head size or microcephaly with disorganized placement of cell types. Specific, localized malformations are termed focal cortical dysplasias (FCD).

View Article and Find Full Text PDF

Green Glyphosate Treatment with Ferrihydrite and CaO via Forming Surface Ternary Complex.

Environ Sci Technol

January 2025

Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China.

Glyphosate (PMG) is a globally used broad-spectrum herbicide and receives environmental concerns because of its moderate persistence and potential carcinogenicity. Traditional PMG treatment methods often suffer from the generation of a more toxic and persistent aminomethylphosphonic acid (AMPA) intermediate. Herein, we develop a green method with ferrihydrite (FH) and CaO (FH/CaO) via regulating the coordination of PMG with FH and Ca, where the phosphonate group of PMG preferentially binds to FH and its carboxylate side complexes with Ca released by CaO, forming a FH-PMG-Ca ternary surface complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!