The following neolacto glycolipids were identified and their developmental expression was studied in the rat cerebral cortex and cerebellum: Fuc alpha 1-3IIInLcOse4Cer,Fuc alpha 1-3VnLcOse6Cer and (Fuc)2 alpha 1-3III,3VnLcOse6Cer, as well as acidic glycolipids, NeuAc alpha 2-3IVnLcOse4Cer [nLM1], (NeuAc)2 alpha 2-3IVnLcOse4Cer [nLD1], O-acetyl (NeuAc)2 alpha 2-3IVnLcOse4Cer [OAc-nLD1] and their higher neolactosaminyl homologues NeuAc alpha 2-3VlnLcOse6Cer [nHM1] and (NeuAc)2 alpha 2-3VlnLcOse6Cer [nHD1]. These glycolipids were expressed in the cerebral cortex only during embryonic stages and disappeared postnatally. This loss was ascribed to the down regulation of the synthesis of the key precursor LcOse3Cer which is synthesized by the enzyme lactosylceramide: N-acetylglucosaminyl transferase. On the other hand in the cerebellum, these glycolipids increased with postnatal development due to increasing availability of LcOse3Cer. In the cerebellum, only nLM1 and fucosyl-neolactoglycolipids declined after postnatal day 10-15, perhaps due to regulation by other glycosyltransferases. Also, in the cerebellum, nLD1 and nHD1 were shown to be specifically associated with Purkinje cells and their dendrites in the molecular layer and with their axon terminals in the deep cerebellar nuclei, similar to other neolactoglycolipids shown previously.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF00731504 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!