Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1042/bst0240461 | DOI Listing |
Sci Rep
January 2025
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh, 11451, Saudi Arabia.
Growing emission of environmentally-hazardous greenhouse pollutants (especially CO) has motivated the researchers to apply gas-liquid membrane contactors as an easy-to-operate and cost-effective technique for increasing their separation efficiency from different sources. In the current decades, ionic liquids (ILs) have shown their potential in the gas separation industry owing to their noteworthy advantages such as great capacity, excellent adjustability and suitable thermal/chemical stability compared to commonly-employed amine absorbents. This investigation aims to analytically/numerically determine the separation yield of CO from CO₂/N gaseous flow using novel -Ethyl-3-methylimidazolium dicyanamide ([emim][CN]) IL inside the gas-liquid contactor.
View Article and Find Full Text PDFFront Public Health
January 2025
Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China.
The burden of disease and death attributable to environmental pollution is a growing public health challenge worldwide, particularly in developing countries. While the adverse effects of environmental pollution on oral health have garnered increasing attention, a comprehensive and systematic assessment remains lacking. This article delves into the intricate relationship between environmental pollution and oral health, highlighting significant impacts on various aspects such as dental caries, periodontal diseases, oral facial clefts, cancer, as well as other oral diseases.
View Article and Find Full Text PDFHeliyon
January 2025
Laser and Plasma Research Institute, Shahid Beheshti, University, G.C., Evin, 19839-63113, Tehran, Iran.
One of the best and most advanced methods for disposal of urban, hospital, industrial, and other hazardous waste is to convert waste into combustible gases in reactors based on plasma arc technology. Also used for renewable energy generation, this technology involves thermal treatment without a combustion process; therefore, the waste is completely decomposed into simple molecules in a near vacuum environment almost devoid of Oxygen at elevated temperatures. The present research uses a thermal transferred arc plasma reactor to conduct a feasibility study on the pyrolysis of three types of wastes: Antar, Orthotoluenediamine (OTD), and Tar.
View Article and Find Full Text PDFSmall
January 2025
Department of Civil and Environment Engineering, University of Ulsan, Daehakro 93, Namgu, Ulsan, 44610, Republic of Korea.
The current lack of stable, scalable, and efficient coating technology dramatically limits the exploitation of solar-driven graphitic carbon nitride (CN) photocatalysts. Herein, a unique, efficient, and scalable method is reported to immobilize CN powder on various substrates ranging from Fluorine tin oxide (FTO), glass, Plexiglas, Al foil, Ti foil, and Granite stone, to even wood. The film shows an outstanding thickness of 212 µm, which is the highest value ever reported.
View Article and Find Full Text PDFDalton Trans
January 2025
Department of Chemistry, Visva-Bharati University, Santiniketan-731235, India.
Carbon monoxide (CO) is widely recognized as a significant environmental pollutant and is associated with numerous instances of accidental poisoning in humans. However, it also serves a pivotal role as a signaling molecule in plants, exhibiting functions analogous to those of other gaseous signaling molecules, including nitric oxide (NO) and hydrogen sulfide (HS). In plant physiology, CO is synthesized as an integral component of the defense mechanism against oxidative damage, particularly under abiotic stress conditions such as drought, salinity, and exposure to heavy metals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!