In order to further elucidate the properties and biological behavior of 5-hydroxy-2-hydroxymethyl-1-methylpyrid-4-one (M1), its X-ray structure has been determined, and the ability of its gadolinium complex to enhance the relaxation of 13C nuclei has been examined. X-ray analysis using Mo K alpha radiation shows that M1 crystallizes in the monoclinic space group C2/c with a complex intermolecular array of hydrogen bonding. No water molecules were present within the unit cell. Gd(M1)2NO3 x 3H2O has been prepared and found to be very soluble in water. The effect of low concentrations of Gd(III) on enhancing the 13C relaxation times of M1 was examined. Trace amounts of Gd(NO3)3 x 6H2O resulted in significant decreases in the relaxation time of certain carbon atoms relative to the control measurements, and these data indicate that carbon atoms which bear donor atoms for Gd(III) undergo a significantly greater relaxation than the other carbons. The water solubility and hydrophilic character of this complex suggest that it may prove useful for the determination of metal binding sites on peptides and oligonucleotides.

Download full-text PDF

Source
http://dx.doi.org/10.1016/0162-0134(95)00129-8DOI Listing

Publication Analysis

Top Keywords

carbon atoms
8
relaxation
5
structure 5-hydroxy-2-hydroxymethyl-1-methylpyrid-4-one
4
5-hydroxy-2-hydroxymethyl-1-methylpyrid-4-one 13c
4
13c nmr
4
nmr relaxation
4
relaxation studies
4
studies gadoliniumiii
4
complex
4
gadoliniumiii complex
4

Similar Publications

Quantum chemical studies of carbon-based graphene-like nanostructures: from benzene to coronene.

J Mol Model

January 2025

Department of Chemistry, Federal Institute of Education, Science and Technology of Espírito Santo, Av. Min. Salgado Filho, Vila Velha, 29106-010, Espírito Santo, Brazil.

Context: This study presents quantum chemical analysis of 14 distinct carbon-based nanostructures (CBN), ranging from simple molecules, like benzene, to more complex structures, such as coronene, which serves as an exemplary graphene-like model. The investigation focuses on elucidating the relationships between molecular orbital (MO) energies, the energy band gaps, electron occupation numbers (eON), electronic conduction, and the compound topologies, seeking to find the one that approaches most of a graphene-like structure for in silico studies. Through detailed examination of molecular properties including chemical hardness and chemical potential, we demonstrate that the electronic exchange between orbitals is directly influenced by the structural topology of the carbon-based nanostructures, as the electron occupation numbers and the molecular orbital energies.

View Article and Find Full Text PDF

Context: The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂).

View Article and Find Full Text PDF

Boriranes, highly strained three-membered cyclic organoboron heterocycles, have emerged as potential synthons for the synthesis of many organoboron species. However, the synthesis of boriranes with tricoordinate, sp-hybridised boron and tetracoordinate, sp-hybridised carbon atoms is very challenging owing to their high Lewis acidity. Herein we describe the isolation of base-free triaminoboriranes from the room-temperature reaction of diaminoalkynes with an aminodistannylborane.

View Article and Find Full Text PDF

Graphene, a two-dimensional material featuring densely packed sp-hybridized carbon atoms arranged in a honeycomb lattice, has revolutionized material science. Laser-induced graphene (LIG) represents a breakthrough method for producing graphene from both commercial and natural precursors via direct laser writing, offering advantages such as simplicity, efficiency, and cost-effectiveness. This study demonstrates a novel approach to synthesize a composite material exclusively from a porous organic polymer (POP) by direct femtosecond laser writing on a compressed imide-linked porous organic polymer substrate.

View Article and Find Full Text PDF

Molecular Uranium Dioxide-Mediated CO Photoreduction.

J Am Chem Soc

January 2025

Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China.

The reduction of CO mediated by transition metals has garnered significant interest, yet little is known about the reduction of CO using f-element compounds. Herein, the reduction of CO to CO by tetravalent uranium (U) compound UO is investigated via matrix isolation infrared spectroscopy and quantum chemical study. Our results reveal that a stable carbonate intermediate OUCO () can be prepared at low temperatures (4-12 K).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!