Molecular docking using surface complementarity.

Proteins

Department of Plant Genetics, Weizmann Institute of Science, Rehovot, Israel.

Published: May 1996

A method is described to dock a ligand into a binding site in a protein on the basis of the complementarity of the intermolecular atomic contacts. Docking is performed by maximization of a complementarity function that is dependent on atomic contact surface area and the chemical properties of the contacting atoms. The generality and simplicity of the complementarity function ensure that a wide range of chemical structures can be handled. The ligand and the protein are treated as rigid bodies, but displacement of a small number of residues lining the ligand binding site can be taken into account. The method can assist in the design of improved ligands by indicating what changes in complementarity may occur as a result of the substitution of an atom in the ligand. The capabilities of the method are demonstrated by application to 14 protein-ligand complexes of known crystal structure.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1097-0134(199605)25:1<120::AID-PROT10>3.0.CO;2-MDOI Listing

Publication Analysis

Top Keywords

ligand binding
8
binding site
8
complementarity function
8
complementarity
5
molecular docking
4
docking surface
4
surface complementarity
4
complementarity method
4
method described
4
described dock
4

Similar Publications

Background: We continue to struggle with the prevention and treatment of the influenza virus. The 2009 swine flu pandemic, caused by the H1N1 strain of influenza A, resulted in numerous fatalities. The threat of influenza remains a significant concern for global health, and the development of novel drugs targeting these viruses is highly desirable.

View Article and Find Full Text PDF

The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.

View Article and Find Full Text PDF

Antigen-presenting cells (APCs) process tumor vaccines and present tumor antigens as the first signals to T cells to activate anti-tumor immunity, which process requires the assistance of co-stimulatory second signals on APCs. The immune checkpoint programmed death ligand 1 (PD-L1) not only mediates the immune escape of tumor cells but also acts as a co-inhibitory second signal on APCs. The serious dysfunction of second signals due to the high expression of PD-L1 on APCs in the tumor body results in the inefficiency of tumor vaccines.

View Article and Find Full Text PDF

Evaluation of predictions of disordered binding regions in the CAID2 experiment.

Comput Struct Biotechnol J

December 2024

Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.

A large portion of the Intrinsically Disordered Regions (IDRs) in protein sequences interact with proteins, nucleic acids, and other types of ligands. Correspondingly, dozens of sequence-based predictors of binding IDRs were developed. A recently completed second community-based Critical Assessments of protein Intrinsic Disorder prediction (CAID2) evaluated 32 predictors of binding IDRs.

View Article and Find Full Text PDF

The 3p21.31 locus is the most robust genomic region associated with COVID-19 severity. This locus contains a main chemokine receptor (CKR) cluster.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!